Math 115 – Global Extrema Problems

Optimization, i.e. finding the global minimum and/or global maximum values of a function, is a very important application of calculus.

As you read these examples, take note of the highlighted **required** key features in each solution. Notice that the work required when finding **global** extrema is typically quite different from the work required when finding **local** extrema.

Example 1

Let

$$f(x) = \begin{cases} \frac{2-x}{e} & x < 1\\ x^2 e^{-x} & x \geqslant 1. \end{cases}$$

Find the x-coordinate(s) of all global extrema of f(x) on [-3,3]. You must use calculus to find your answers, and be sure to show enough evidence to fully justify your answers.

- Don't forget to check for continuity and differentiability, particularly for piecewise functions.
- Find critical points algebraically. **Don't forget** to check for points where f' does not exist.
- Consider the value of f at all relevant critical points.
- \bullet Consider the value of f at the endpoints of the interval.

Example 2a

A function g(x) and its derivative g'(x) are given below.

$$g(x) = \frac{(x-1)^2}{x^3}$$

$$g'(x) = -\frac{(x-1)(x-3)}{x^4}$$

Find the x-coordinate(s) of all global extrema of g(x) on $(0, \infty)$. You must use calculus to find your answers, and be sure to show enough evidence to fully justify your answers.

$$g'(x) = 0: \quad x = 1,3$$

$$g'(x) \quad DNE \quad x = 0, \text{ not in domain}$$

$$g(1) = 0 \qquad \lim_{x \to 0^{+}} g(x) = \infty$$

$$\text{of gat critical points} \qquad g(3) = \frac{4}{27} \qquad \lim_{x \to \infty} g(x) = 0$$

$$\text{So g has a global min at } x = 1$$

$$\text{and no global max}$$

- \bullet Consider the value of g at all relevant critical points.
- \bullet Consider the behavior of g at each end of the interval.

Example 2b

Suppose we had been asked to find the location(s) of all global extrema of g(x) on $(2, \infty)$ instead. We could certainly provide a solution similar to that above. However, because in this case there is **only one** critical point of g(x) in the interval $(2, \infty)$, we can provide the following alternate solution.

- Show that the one critical point in the interval is a local max or min, including all necessary justification (see Local Extrema and Inflection Point Problems).
- Clearly state that there is only one critical point in the interval when justifying the conclusion.