1. [20 points] Use the functions g, h, p, and k given below to answer the questions that follow. Note: Some answers may involve the constant b.

t	-4	-2	0	2	4	6
$g(t)$	4	b	2	1	-2	-b

$$
h(y)=\frac{2^{y}}{y^{2}+1}
$$

$p(x)= \begin{cases}(x+4)^{2}-5 & \text { for }-3 \leq x \leq-1 \\ 1.2(0.2)^{x} & \text { for } x>-1\end{cases}$

a. [2 points] Evaluate $p(-1)+p(1)$.
b. [2 points] Evaluate $p(k(0))$.
c. [2 points] Evaluate $h(g(-2)+2)$.
d. [2 points] Solve $k(m)=b$ for m.
e. [2 points] Assume g and k are invertible. Evaluate $g^{-1}(-2)+k^{-1}(0)$.

This is a continuation of the problem from the previous page.
Recall that $h(y)=\frac{2^{y}}{y^{2}+1}$ and $p(x)= \begin{cases}(x+4)^{2}-5 & \text { for }-3 \leq x \leq-1 \\ 1.2(0.2)^{x} & \text { for } x>-1\end{cases}$
f. [3 points] Find the domain of h. Use either inequalities or interval notation to give your answer. Please remember to show your work.

Domain:

g. [3 points] Find the domain of p. Use either inequalities or interval notation to give your answers. Please remember to show your work.

Domain:

h. [4 points] Find the range of p. Use either inequalities or interval notation to give your answers. Please remember to show your work; this includes sketching any graphs you use.

Range:

