1. [20 points] Use the functions g, h, p, and k given below to answer the questions that follow. Note: Some answers may involve the constant b.

 ≤ -1

t	-4	-2	0	2	4	6	
g(t)	4	b	2	1	-2	-b	
$h(y) = \frac{2^y}{y^2 + 1}$							
$p(x) = \begin{cases} (x+4)^2 - 5\\ 1.2(0.2)^x \end{cases}$					for for	x - 3 x > x > x	$3 \le x$ -1

- **a**. [2 points] Evaluate p(-1) + p(1).
- **b**. [2 points] Evaluate p(k(0)).
- c. [2 points] Evaluate h(g(-2) + 2).
- **d**. [2 points] Solve k(m) = b for m.

e. [2 points] Assume g and k are invertible. Evaluate $g^{-1}(-2) + k^{-1}(0)$.

This problem continues on the next page.

This is a continuation of the problem from the previous page.

Recall that
$$h(y) = \frac{2^y}{y^2 + 1}$$
 and $p(x) = \begin{cases} (x+4)^2 - 5 & \text{for } -3 \le x \le -1\\ 1.2(0.2)^x & \text{for } x > -1. \end{cases}$

f. [3 points] Find the domain of h. Use either inequalities or interval notation to give your answer. Please remember to show your work.

Domain:

g. [3 points] Find the domain of p. Use either inequalities or interval notation to give your answers. Please remember to show your work.

Domain:

h. [4 points] Find the range of p. Use either inequalities or interval notation to give your answers. Please remember to show your work; this includes sketching any graphs you use.

Range: