B(W(20))

 $B(W^{-1}(20))$

7. [10 points] In this problem, we consider two functions:

 $B^{-1}(20)$

 $B^{-1}(W^{-1}(20))$

- W(s) is the wind chill¹ (in degrees Fahrenheit) when the temperature is 30 degrees Fahrenheit and the wind speed is s mph (miles per hour).
- B(c) is the time (in minutes) it takes to develop frostbite on exposed skin when the wind chill is c degrees Fahrenheit.

Assume both W and B are invertible. Fill in each blank below with one of the possible answers given below. Note that a given answer may be used in more than one blank, and that not all possible answers will be used.

Possible Answers:

 $W^{-1}(20)$

 $W^{-1}(B^{-1}(20))$

20 W(20) B(20) W(20) + B(20)

W(B(20))

 $W(B^{-1}(20))$

Assume throughout this problem that the temperature is 30 degrees Fahrenheit.

- a. [2 points] If the wind chill is ______ degrees Fahrenheit, the wind speed is 20 mph.
- **b.** [2 points] When the wind speed is 20 mph, exposed skin will develop frostbite in _____ minutes.
- c. [2 points] If the wind chill is 20 degrees Fahrenheit, then the wind speed is _____ mph.
- d. [2 points] If the wind chill is 20 degrees Fahrenheit, then it will take exposed skin minutes to develop frostbite.
- e. [2 points] When the wind chill is $B^{-1}(20)$ degrees Fahrenheit, exposed skin will develop frostbite in _____ minutes.

¹Note that wind chill is the temperature it "feels like".