7. [10 points] In this problem, we consider two functions:

- \(W(s) \) is the wind chill\(^1\) (in degrees Fahrenheit) when the temperature is 30 degrees Fahrenheit and the wind speed is \(s \) mph (miles per hour).
- \(B(c) \) is the time (in minutes) it takes to develop frostbite on exposed skin when the wind chill is \(c \) degrees Fahrenheit.

Assume both \(W \) and \(B \) are invertible. Fill in each blank below with one of the possible answers given below. Note that a given answer may be used in more than one blank, and that not all possible answers will be used.

Possible Answers:

\[
\begin{array}{cccc}
20 & W(20) & B(20) & W(20)+B(20) \\
W^{-1}(20) & B^{-1}(20) & W(B(20)) & B(W(20)) \\
W^{-1}(B^{-1}(20)) & B^{-1}(W^{-1}(20)) & W(B^{-1}(20)) & B(W^{-1}(20)) \\
\end{array}
\]

\[^*\text{Assume throughout this problem that the temperature is 30 degrees Fahrenheit.}\]

a. [2 points] If the wind chill is ________ degrees Fahrenheit, the wind speed is 20 mph.

b. [2 points] When the wind speed is 20 mph, exposed skin will develop frostbite in ________ minutes.

c. [2 points] If the wind chill is 20 degrees Fahrenheit, then the wind speed is ________ mph.

d. [2 points] If the wind chill is 20 degrees Fahrenheit, then it will take exposed skin ________ minutes to develop frostbite.

e. [2 points] When the wind chill is \(B^{-1}(20) \) degrees Fahrenheit, exposed skin will develop frostbite in ________ minutes.

\(^1\text{Note that wind chill is the temperature it “feels like.”}\)