1. [20 points] Use the functions g, h, p, and k given below to answer the questions that follow. Note: Some answers may involve the constant b.

t	-4	-2	0	2	4	6
$g(t)$	4	b	2	1	-2	-b

$$
h(y)=\frac{2^{y}}{y^{2}+1}
$$

$$
p(x)= \begin{cases}(x+4)^{2}-5 & \text { for }-3 \leq x \leq-1 \\ 1.2(0.2)^{x} & \text { for } x>-1\end{cases}
$$

a. [2 points]

Evaluate $p(-1)+p(1)$.
Solution:
$\left.p(-1)+p(1)=\left((-1+4)^{2}-5\right)+1.2(0.2)^{1}=\left((3)^{2}-5\right)\right)+1.2(0.2)=4+0.24=4.24$
Answer: 4.24
b. [2 points] Evaluate $p(k(0))$.

Solution: $\quad p(k(0))=p(2)=1.2(0.2)^{2}=1.2(0.04)=0.048$
Answer: 0.048
c. [2 points] Evaluate $h(g(-2)+2)$.

Solution: $\quad h(g(-2)+2)=h(b+2)=\frac{2^{b+2}}{(b+2)^{2}+1}=\frac{2^{b+2}}{b^{2}+4 b+5}$
Answer: $\frac{2^{b+2}}{b^{2}+4 b+5}$
d. [2 points] Solve $k(m)=b$ for m.

Solution: Since $k(2)=b$ (and no other input gives an output of b) we see that the unique solution is $m=2$.
Answer: $m=2$
e. [2 points] Assume g and k are invertible. Evaluate $g^{-1}(-2)+k^{-1}(0)$.

Solution: $\quad g^{-1}(-2)+k^{-1}(0)=4+(-b)=4-b$
Answer: $4-b$
This problem continues on the next page.

This is a continuation of the problem from the previous page.
Recall that $h(y)=\frac{2^{y}}{y^{2}+1}$ and $p(x)= \begin{cases}(x+4)^{2}-5 & \text { for }-3 \leq x \leq-1 \\ 1.2(0.2)^{x} & \text { for } x>-1 .\end{cases}$
f. [3 points] Find the domain of h. Use either inequalities or interval notation to give your answer. Please remember to show your work.

Solution: Since 2^{y} and $y^{2}+1$ are both defined for all values of y, the only possible restriction is that the denominator cannot be zero. However, $y^{2}+1>0$ for all real values of y, so the domain of h is the set of all real numbers.

$$
\text { Domain: } \quad(-\infty, \infty)
$$

g. [3 points] Find the domain of p. Use either inequalities or interval notation to give your answers. Please remember to show your work.

Solution: The first piece of the formula defines the function for values of x in the interval $[-3,-1]$. The second piece does so for values of x in the interval $(-1, \infty)$. Hence the function is defined for all values of x in the interval $[-3, \infty)$
Domain: $\quad[-3, \infty) \quad$ (All real numbers x with $x \geq-3$)
h. [4 points] Find the range of p. Use either inequalities or interval notation to give your answers. Please remember to show your work; this includes sketching any graphs you use.

Solution:

The graph of $y=p(x)$ is shown to the right. From the graph, we see that the smallest output of the function p on its domain is -4 . The other outputs are all the real numbers from -4 up to (but not including) 6 .

Range: $\quad[-4,6) \quad$ (All real numbers y with $-4 \leq y<6$)

