7. [10 points] In this problem, we consider two functions:

- $W(s)$ is the wind chill ${ }^{1}$ (in degrees Fahrenheit) when the temperature is 30 degrees Fahrenheit and the wind speed is $s \mathrm{mph}$ (miles per hour).
- $B(c)$ is the time (in minutes) it takes to develop frostbite on exposed skin when the wind chill is c degrees Fahrenheit.

Assume both W and B are invertible. Fill in each blank below with one of the possible answers given below. Note that a given answer may be used in more than one blank, and that not all possible answers will be used.

Possible Answers:

20
$W(20)$
$B(20)$
$\mathrm{W}(20)+\mathrm{B}(20)$
$W^{-1}(20)$
$B^{-1}(20)$
$W(B(20))$
$B(W(20))$
$W^{-1}\left(B^{-1}(20)\right)$
$B^{-1}\left(W^{-1}(20)\right)$
$W\left(B^{-1}(20)\right)$
$B\left(W^{-1}(20)\right)$
Assume throughout this problem that the temperature is 30 degrees Fahrenheit.
a. [2 points] If the wind chill is $\quad W(20)$ degrees Fahrenheit, the wind speed is 20 mph .
b. [2 points] When the wind speed is 20 mph , exposed skin will develop frostbite in $\underline{B(W(20))}$ minutes.
c. [2 points] If the wind chill is 20 degrees Fahrenheit, then the wind speed is $\underline{W^{-1}(20)}$ mph .
d. [2 points] If the wind chill is 20 degrees Fahrenheit, then it will take exposed skin
$B(20)$ minutes to develop frostbite.
e. [2 points] When the wind chill is $B^{-1}(20)$ degrees Fahrenheit, exposed skin will develop
frostbite in 20 minutes.

[^0]
[^0]: ${ }^{1}$ Note that wind chill is the temperature it "feels like".

