- 7. [10 points] In this problem, we consider two functions:
 - W(s) is the wind chill¹ (in degrees Fahrenheit) when the temperature is 30 degrees Fahrenheit and the wind speed is s mph (miles per hour).
 - B(c) is the time (in minutes) it takes to develop frostbite on exposed skin when the wind chill is c degrees Fahrenheit.

Assume both W and B are invertible. Fill in each blank below with one of the possible answers given below. Note that a given answer may be used in more than one blank, and that not all possible answers will be used.

Possible Answers:

20	W(20)	B(20)	W(20) + B(20)
$W^{-1}(20)$	$B^{-1}(20)$	W(B(20))	B(W(20))
$W^{-1}(B^{-1}(20))$	$B^{-1}(W^{-1}(20))$	$W(B^{-1}(20))$	$B(W^{-1}(20))$
Assume throughout	t this problem that the	temperature is 30 degree	ees Fahrenheit.

- **a**. [2 points] If the wind chill is <u>W(20)</u> degrees Fahrenheit, the wind speed is 20 mph.
- **b.** [2 points] When the wind speed is 20 mph, exposed skin will develop frostbite in $\underline{B(W(20))}$ minutes.
- c. [2 points] If the wind chill is 20 degrees Fahrenheit, then the wind speed is $W^{-1}(20)$ mph.
- d. [2 points] If the wind chill is 20 degrees Fahrenheit, then it will take exposed skin

<u>B(20)</u> minutes to develop frostbite.

e. [2 points] When the wind chill is $B^{-1}(20)$ degrees Fahrenheit, exposed skin will develop

frostbite in 20 minutes.

¹Note that *wind chill* is the temperature it "feels like".