4. [15 points]

A load of bricks is being lifted by a crane at a constant speed of $5.6 \mathrm{~m} / \mathrm{s}$. A brick falls off the stack. The fallen brick's height, in meters above the ground, t seconds after falling off the stack is given by $h(t)=15.4+5.6 t-4.9 t^{2}$.
Throughout this problem, remember to include units and show your work and/or explain your reasoning clearly. (Recall Instruction \#7 from the front page.) All answers should be given either in exact form or to at least two decimal places.
a. [2 points] How high above the ground was the brick when it fell off the stack?

Solution: The brick fell off the stack at time $t=0$ and $h(0)=15.4$, so the brick was 15.4 meters above the ground when it fell off the stack.
b. [3 points] How long does it take for the brick to hit the ground?

Solution: If the brick hits the ground at time g, then $h(g)=0$, so we solve for g in the equation $15.4+5.6 g-4.9 g^{2}=0$. By the quadratic formula, solutions to this equation are given by $g=\frac{-5.6 \pm \sqrt{5.6^{2}-4(-4.9)(15.4)}}{2(-4.9)}=\frac{-5.6 \pm \sqrt{333.2}}{-9.8}=\frac{5.6 \pm \sqrt{333.2}}{9.8}$. These two solutions are approximately equal to -1.291 and 2.434 . Only the postive solution makes sense in the context of this problem. So, the brick hits the ground approximately 2.434 seconds after it falls from the stack.
(Note: Alternatively, we could use a graphing calculator to find the positive zero of the function $h(t)$.)
c. [3 points] When does the brick reach its highest point?

How high above the ground is the brick at that time?
Solution: Since the graph of h opens downward, h reaches its maximum at its vertex, so the brick reaches its highest point at the t-coordinate of its vertex, which is $\frac{-5.6}{2(-4.9)}=\frac{4}{7}$. (We can find this by beginning the process of completing the square, i.e. $h(t)=-4.9\left(t^{2}+\right.$ $\left.\frac{5.6}{4.9} t\right)+15.4$ so the t-coordinate of the vertex is at $t=\frac{1}{2}\left(\frac{5.6}{4.9}\right)$, or by using the "maximum" feature of the graphing calculator.) At $t=4 / 7$, the height of the brick is $h(4 / 7)=17$ meters. So, $4 / 7$ seconds after falling from the stack, the brick reaches its highest point, which is 17 meters above the ground
d. [3 points] Find the domain and range of the function h in the context of this problem.

Solution: In the context of this problem, the domain is approximately [0, 2.434] (based on part (b)) and the range is $[0,17]$ (based on part (c)).

Domain: \qquad Range: \qquad
e. [4 points] The supervisor of the construction site sees the brick fall as it passes in front of his office window, which is at a height of 3 meters above the ground. How much time passes between when the supervisor sees the brick and when the brick hits the ground?

Solution: To solve $h(t)=3$, we can use the quadratic equation (to solve $-4.9 t^{2}+5.6 t+$ $12.4=0$) or the "intersect" feature of the graphing calculator to find $t \approx 2.2617$, so the supervisor sees the brick approximately 2.2617 seconds after it falls, from the stack. This is about $2.4341-2.2617=0.1724$ seconds before the brick hits the ground. Hence the supervisor sees the brick about 0.172 seconds before the brick hits the ground.

