5. [13 points] In 1940, there were 6.1 million farms in the United States, and this number decreased by a total of 60% during the next 40 years.
a. [2 points] Based on the data above, how many farms were there in the US in 1980 ?

Solution: In 1980, there were 40% as many farms as there were in 1940, so there were $0.4(6.1)=2.44$ million farms.
b. [5 points] Suppose that the number of farms decreased at a constant rate from 1940-1980. Find a formula for $F(t)$, the number of millions of farms in the US this model predicts there were t years after 1940 .
Solution: Since the rate of change is constant, F is linear. The constant average rate of change (slope) of F is $\frac{F(40)-F(0)}{40-0}=\frac{2.44-6.1}{40}=-0.0915$ million farms per year.
Since $F(0)=6.1$, we use slope-intercept form to see that $F(t)=6.1-0.0915 t$.
According to this model, in what year were there (or will there be) a total of 4 million farms in the US?
Solution: We solve the equation $F(t)=4$ and find

$$
\begin{aligned}
F(t) & =4 \\
6.1-0.0915 t & =4 \\
-0.0915 t & =-2.1 \\
t & \approx 22.95
\end{aligned}
$$

So according to this model, there were 4 million farms in the US in about 1963.
c. [6 points] Now, suppose instead that the number of farms decreased at a constant percent rate from 1940-1980. Under this new assumption, by what percent did the number of farms in the US decrease each year between 1940 and $1980 ?$

Solution: Under this assumption, the number of farms is an exponential function of time. Let b be the annual decay factor. Then the number of farms in 1980 was $6.1\left(b^{40}\right)$, so $2.44=6.1\left(b^{40}\right)$. Thus $b^{40}=0.4$ so $b=0.4^{1 / 40} \approx 0.97735$. Hence the number of farms in the US decreased by about 2.23% each year between 1940 and 1980.
Find a formula for $P(t)$, the number of millions of farms in the US this model predicts there were t years after 1940 .
Solution: This is the formula we were working with above. In particular, this is an exponential function with initial value 6.1. We found the annual decay factor b above, so we have $P(t)=6.1(0.4)^{t / 40} \approx 6.1(0.9774)^{t}$.

