6. [5 points] Let $f(x)=-4 x^{2}+12 k x-17$. Use the method of completing the square to rewrite this function in vertex form and then give the coordinates of the vertex.
Show your work step-by-step. Note: Your answers may involve the constant k.

$$
\begin{aligned}
& \text { Solution: } \begin{aligned}
f(x)= & -4 x^{2}+12 k x-17 \\
= & -4\left(x^{2}-3 k x\right)-17 \\
= & -4\left[x^{2}-3 k x+\left(\frac{-3 k}{2}\right)^{2}-\left(\frac{-3 k}{2}\right)^{2}\right]-17 \\
= & -4\left[\left(x-\frac{3 k}{2}\right)^{2}-\frac{9 k^{2}}{4}\right]-17=-4\left(x-\frac{3 k}{2}\right)^{2}+9 k^{2}-17 \\
\text { Vertex form: } \quad & f(x)=-4\left(x-\frac{3 k}{2}\right)^{2}+\left(9 k^{2}-17\right)
\end{aligned}
\end{aligned}
$$

Vertex: \qquad
7. [10 points] Consider the function q defined by $q(x)= \begin{cases}3(0.75)^{x} & \text { if } \quad x \leq-1 \\ 2(x+1)^{2}-8 & \text { if }-1<x<2\end{cases}$
a. [2 points] Evaluate $q(q(0))$.

Solution: $\quad q(q(0))=q\left(2(0+1)^{2}-8\right)=q(2-8)=q(-6)=3(0.75)^{-6}$.
b. [4 points] Sketch a graph of $y=q(x)$. Carefully label your axes and important points on your graph (including intercepts).

c. [4 points] Find the domain and range of q. (Use either interval notation or inequalities.)

Solution: Based on the given formula, we see that the domain of q is the interval $(-\infty, 2)$ and using the graph from part (b), we conclude that the range of q is the interval $(-8, \infty)$.

Domain: \qquad Range: \qquad

