2. [13 points] Throughout this problem, remember to show your work carefully.
a. [4 points] Find a formula for the quadratic function $g(x)$ described by the table below.

x	-4	1	2	7
$g(x)$	0	-5	-5	0

Solution: We see from the table that the zeros of g are $x=-4$ and $x=7$. Therefore, a formula for $g((x)$ is given in factored form by $g(x)=a(x+4)(x-7)$ for some constant a. To find a, we use the fact that $g(1)=-5$, so $a(1+4)(1-7)=-5$. Then $-30 a=-5$ so $a=\frac{-5}{-30}=\frac{1}{6}$. Thus $g(x)=\frac{1}{6}(x+4)(x-7)$ or, expanding to rewrite this in standard form, we have $g(x)=\frac{1}{6} x^{2}-\frac{1}{2} x-\frac{14}{3}$.
Answer: $g(x)=\underline{\frac{1}{6}(x+4)(x-7) \quad \text { or } \quad \frac{1}{6} x^{2}-\frac{1}{2} x-\frac{14}{3}}$
b. [3 points] Given $f(x)=13(x-8)^{2}+w$, find the average rate of change of f from $x=8$ to $x=8+h$. Simplify your answer completely. Your answer may include h and/or w.

Solution: The average rate of change of f from $x=8$ to $x=8+h$ is given by

$$
\begin{aligned}
\frac{f(8+h)-f(8)}{(8+h)-8} & =\frac{\left(13((8+h)-8)^{2}+w\right)-\left(13(8-8)^{2}+w\right)}{h} \\
& =\frac{\left(13 h^{2}+w\right)-(0+w)}{h}=\frac{13 h^{2}+w-w}{h}=\frac{13 h^{2}}{h}=13 h
\end{aligned}
$$

Answer: $13 h$
c. [6 points] Consider the function C defined below.

$$
C(x)= \begin{cases}-2+x & \text { if }-5 \leq x<0 \\ 3(1.06)^{x} & \text { if } 0 \leq x\end{cases}
$$

Sketch a graph of $y=C(x)$. Then find the domain and range of this function.
Remember to clearly label your axes.
Use either interval notation or inequalities to give your answers.

Domain: \qquad Range: \qquad

