4. [11 points] Invertible functions q, n, and h are described by the table, formula, and graph below. Use this information to answer the questions that follow.

x	-4	-1	0	1	4
$q(x)$	10	1	-1	-2	-4

$$
n(t)=3-2 t
$$

a. [3 points] Based on the data in the table above, determine which of the following statements could be true about the function q on the entire fraterapfin $\overline{\mathrm{m}} h(\underline{x})-4$ to $x=4$. (Circle all such statements or circle None of these.)
q is an increasing function.
q is a decreasing function.
q is a linear function.
q is concave up.
q is concave down.
None of these
b. [5 points] Evaluate each of the following.
(i) $h(-2)-2 q(-4)$
(ii) $5 q^{-1}(1)$

Solution: From the graph, we see $h(-2)=-4$. From the table, we see that $q(-4)=10$. So
$h(-2)-2 q(-4)=-4-2(10)=-24$.

Answer: \qquad
(iii) $q(q(q(0)))$

Solution: From the table, we see that $q(0)=-1, q(-1)=1$, and $q(1)=-2$. Thus $q(q(q(0)))=q(q(-1))=q(1)=-2$.
Answer: \qquad -2

Answer: \qquad
Answer: \qquad
(iv) $n\left(h^{-1}(-3)\right)$ see that $h^{-1}(-3)=-4$. Hence

Solution: From the table, we see that $q^{-1}(1)=-1$. So

$$
5 q^{-1}(1)=5(-1)=-5 .
$$

Solution: From the graph, we $n\left(h^{-1}(-3)\right)=n(-4)=3-2(-4)=11$
c. [3 points] Find a formula for $4 n(n(t))$. Simplify your answer completely.

Solution:

$$
4 n(n(t))=4 n(3-2 t)=4(3-2(3-2 t))=4(3-6+4 t)=4(-3+4 t)=-12+16 t
$$

Answer: $4 n(n(t))=$ $16 t-12$

