5. [13 points] Roo is a boxing kangaroo in Australia. Every Sunday, Roo has a boxing match against a professional boxer at the Sydney Opera House.

Let $r(t)$ be the revenue, in dollars, that the opera house makes from ticket sales when it sells t tickets to one of Roo's matches. Then

$$
r(t)=t\left(230-\frac{1}{30} t\right) .
$$

Note: The capacity of the Sydney Opera House is 5738 , so there are never more than 5738 tickets sold to a match.
a. [5 points] If the opera house had a revenue of $\$ 159,120$ from ticket sales to last week's match, how many tickets did they sell? Remember to show your work carefully.
Solution: If the opera house has a revenue of $\$ 159,120$, then $r(t)=159120$. We use the quadratic formula to solve for t in this equation.

$$
\begin{aligned}
159120 & =r(t) & \text { So } t & =\frac{-230 \pm \sqrt{230^{2}-4\left(-\frac{1}{30}\right)(-15912}}{2\left(-\frac{1}{30}\right)} \\
159120 & =t\left(230-\frac{1}{30} t\right) & & =\frac{-230 \pm \sqrt{52900-21216}}{-\frac{1}{15}} \\
159120 & =-\frac{1}{30} t^{2}+230 t & & =-15(-230 \pm \sqrt{31684}) \\
0 & =-\frac{1}{30} t^{2}+230 t-159120 & & =-15(-230 \pm 178)=780 \text { or } 6120
\end{aligned}
$$

Because the capacity of the opera house is 5738 , the only valid solution is 780 .
Answer: 780 tickets
b. [6 points] Use the method of completing the square to put the formula for $r(t)$ in vertex form. Carefully show your algebraic work step-by-step.

$$
\begin{aligned}
& \text { Solution: } \begin{aligned}
& r(t)=t\left(230-\frac{1}{30} t\right)=-\frac{1}{30} t^{2}+230 t=-\frac{1}{30}\left(t^{2}-6900 t\right) \\
&=-\frac{1}{30}\left[t^{2}-6900 t+\left(\frac{-6900}{2}\right)^{2}-\left(\frac{-6900}{2}\right)^{2}\right] \\
&=-\frac{1}{30}\left[(t-3450)^{2}-(-3450)^{2}\right] \\
&=-\frac{1}{30}(t-3450)^{2}+396750 \\
& \text { Answer: } r(t)=-\frac{1}{30}(t-3450)^{2}+396750
\end{aligned}
\end{aligned}
$$

c. [2 points]

Solution: Using the vertex form we found above, the vertex is (3450, 396750). Because the leading coefficient $\left(-\frac{1}{30}\right)$ is negative, this gives the maximum value of the function. Thus the maximum revenue is $\$ 396,750$, and this occurs when 3450 tickets are sold.

What is the maximum possible revenue?
\$396, 750
How many tickets are sold to make the maximum possible revenue? 3450 tickets

