- 6. [10 points] A local organic farm sells chicken eggs. Consider the following functions.
 - G(k) is the number of eggs produced in a day when the farm has k healthy chickens.
 - R(z) is the daily egg revenue (in dollars) the farm receives when it produces z eggs that day.

Throughout this problem, assume that the functions G and R are invertible.

For each of the sentences (a)-(e) below, fill in the blank with the <u>one</u> expression from the list of "possible answers" given below that makes the statement true.

No work or explanation is necessary for this problem.

Possible Answers:

10	$R^{-1}(10)$	G(G(10))	$G(R^{-1}(10))$
G(10)	R(G(10))	$R^{-1}(G(10))$	$R^{-1}(G^{-1}(10))$
R(10)	G(R(10))	$G^{-1}(R(10))$	n (G (10))
$G^{-1}(10)$	R(R(10))	$R(G^{-1}(10))$	$G^{-1}(R^{-1}(10))$

a. [2 points]

If the farm produced 10 eggs today, then its daily egg revenue today was $\underline{R(10)}$ dollars.

b. [2 points]

If the farm produced 10 eggs today, then there were $G^{-1}(10)$ healthy chickens.

c. [2 points]

Today the farm had 10 healthy chickens, so its daily egg revenue was R(G(10)) dollars.

d. [2 points]

If the farm produced $R^{-1}(10)$ eggs today, then its daily egg revenue was <u>10</u> dollars.

e. [2 points]

If the farm's daily egg revenue today was \$10, then there were $G^{-1}(R^{-1}(10))$ healthy chickens.