- **9**. [10 points] Annie Ant finished building her anthill, and it immediately started eroding because of the weather. Every day, her anthill loses 1.5% of its volume. Let v(d) be the volume, in cm³, of Annie's anthill *d* days after she finished building it. Assume that her anthill was 1200 cm³ when she finished building it.
 - **a**. [2 points] Based on the description above, answer each of the following questions. In each case, *circle the <u>one</u> best answer*. Note: You do NOT need to explain your reasoning.

Solution: According to the description, the volume of the anthill changes at a constant percent rate per unit time, so v(d) is an exponential function. Since the anthill is losing volume, v(d) is a decreasing function. (The volume of the anthill is decaying exponentially.)

(i) What kind of function is v(d)?

 \circ linear \circ quadratic \circ exponential \circ NONE OF THESE

- (ii) Which of the following accurately describes v(d)?
 - $\circ v(d)$ is an increasing function. $\circ v(d)$ is a decreasing function.

b. [3 points] Find a formula for v(d) in terms of d.

Solution: The initial value is 1200. Because the anthill loses 1.5% of its volume every day, the decay factor of this exponential function is 1 - 0.015 = 0.985. So a formula for the exponential function v(d) is

$$v(d) = 1200(0.985)^d$$

Answer: v(d) =<u>1200(0.985)^d</u>

c. [3 points] Give a practical interpretation of the expression $v^{-1}(50)$ in the context of this problem. Use a complete sentence and <u>include units</u>. Note that you do <u>not</u> need to evaluate $v^{-1}(50)$.

Solution: After the anthill is finished being built, it takes $v^{-1}(50)$ days for the volume of the anthill to be 50 cm³.

d. [2 points] Solve for a in the equation $v^{-1}(a) = 10$. Either give your answer in exact form or rounded to the nearest 0.01.

Solution: If
$$v^{-1}(a) = 10$$
, then $v(10) = a$. Therefore

 $a = v(10) = 1200(0.985)^{10} \approx 1031.67653071.$

Answer: $a = 1200(0.985)^{10}$ or $a \approx 1031.68$