9. [10 points] Annie Ant finished building her anthill, and it immediately started eroding because of the weather. Every day, her anthill loses 1.5% of its volume. Let $v(d)$ be the volume, in cm^{3}, of Annie's anthill d days after she finished building it. Assume that her anthill was 1200 cm^{3} when she finished building it.
a. [2 points] Based on the description above, answer each of the following questions. In each case, circle the one best answer. Note: You do Not need to explain your reasoning.
Solution: According to the description, the volume of the anthill changes at a constant percent rate per unit time, so $v(d)$ is an exponential function. Since the anthill is losing volume, $v(d)$ is a decreasing function. (The volume of the anthill is decaying exponentially.)
(i) What kind of function is $v(d)$?

$$
\circ \text { linear } \circ \text { quadratic } \quad \circ \text { exponential } \circ \text { NONE OF THESE }
$$

(ii) Which of the following accurately describes $v(d)$?

$$
\circ v(d) \text { is an increasing function. } \quad \circ v(d) \text { is a decreasing function. }
$$

- NEITHER OF THESE

b. [3 points] Find a formula for $v(d)$ in terms of d.

Solution: The initial value is 1200 . Because the anthill loses 1.5% of its volume every day, the decay factor of this exponential function is $1-0.015=0.985$. So a formula for the exponential function $v(d)$ is

$$
v(d)=1200(0.985)^{d}
$$

Answer: $v(d)=$ $1200(0.985)^{d}$
c. [3 points] Give a practical interpretation of the expression $v^{-1}(50)$ in the context of this problem. Use a complete sentence and include units. Note that you do not need to evaluate $v^{-1}(50)$.

Solution: After the anthill is finished being built, it takes $v^{-1}(50)$ days for the volume of the anthill to be $50 \mathrm{~cm}^{3}$.
d. [2 points] Solve for a in the equation $v^{-1}(a)=10$. Either give your answer in exact form or rounded to the nearest 0.01 .
Solution: If $v^{-1}(a)=10$, then $v(10)=a$. Therefore

$$
a=v(10)=1200(0.985)^{10} \approx 1031.67653071 .
$$

Answer: $\quad a=1200(0.985)^{10} \quad$ or $\quad a \approx 1031.68$

