5. [10 points] While ski jumping, David broke his leg and was taken to the hospital. The hospital doctor administered a painkiller to David at noon. At 3 pm , the concentration of the painkiller in David's blood was 10 mg per liter and at 5 pm , it fell to 6 mg per liter. Let $C(t)$ be the concentration (in mg per liter) of the painkiller in David's blood t hours after noon. Suppose that the function C is decreasing exponentially.
a. [6 points] Find a formula for $C(t)$. Show all your work. Your answer must be exact.

$$
C(t)=
$$

\qquad
b. [4 points] What is the hourly percentage growth rate of $C(t)$ and the initial concentration of painkiller in David's blood? Include units when appropriate. Your answer must be exact or accurate up to one decimal place.

Hourly percentage growth rate $=$ \qquad Initial concentration= \qquad
6. [5 points] For each of the following functions, write down its growth factor if the function is exponential or NONE if the function is not exponential.
(i) $f(t)=2 t^{3} \quad$ Answer $=$ \qquad
(ii) $g(t)=2^{t} 3^{t} \quad$ Answer $=$ \qquad
(iii) $h(t)=\left(3^{-t}\right)^{2} \quad$ Answer $=$ \qquad

