2. [10 points] Indicate if each of the following statements are true or false by circling the correct answer. No justification is required.
a. [2 points] Let g be the inverse of the function f. If a and b are constants such that $a=f(b)$, then $b=g(a)$.
True False
b. [2 points] The line $2 x-3 y+100=0$ is perpendicular to the line $12 y+18 x=1$.

True False
Solution: The line $2 x-3 y+100=0$ has slope $m_{1}=\frac{2}{3}$. The line $12 y+18 x=1$ has slope $m_{2}=-\frac{3}{2}$. Since $m_{1} m_{2}=-1$, then the lines are perpendicular.
c. [2 points] Some of the values of the function K are given in the table.

u	-3	-1	2
$K(u)$	2	3	4

The function K could be linear.
True

Solution: Looking at the rate of change between consecutive points in the table:

$$
m_{1}=\frac{3-2}{-1+3}=\frac{1}{2} \quad m_{2}=\frac{4-3}{2+1}=\frac{1}{3} \text { then } K(u) \text { can't be a linear function. }
$$

d. [2 points] Some of the values of the function Q are given in the table.

$$
\begin{array}{c|c|c|c|c|}
z & -3 & -1 & 1 & 3 \\
\hline Q(z) & 5 & 0.5 & -2 & -4
\end{array}
$$

The graph of the function Q could be concave up .
False
Looking at the rate of change between consecutive points in the table:

$$
m_{1}=\frac{0.5-5}{-1+3}=-2.25, \quad m_{2}=\frac{-2-0.5}{1+1}=-1.25, \quad m_{3}=\frac{-4+2}{3-1}=-1 .
$$

then the graph of the function $Q(x)$ can be concave up.
e. [2 points] If $f(x)=2 x+1$ and $g(x)=x^{2}+1$ then $f(g(x))=2 x^{2}+3$.

> True False

Solution: $\quad f(g(x))=f\left(x^{2}+1\right)=2\left(x^{2}+1\right)+1=2 x^{2}+3$.

