4. [16 points] David is a professional extreme athlete. In one of his stunts, he jumps off a ski ramp. David's height H (in m) above his landing point, from the moment he leaves the ramp until he lands, is given by the function

$$
H=f(t)=-5 t^{2}+8 t+15
$$

In this formula, t is the time (in seconds) after David leaves the ramp.

a. [3 points] Find the exact time it took David to travel from the ramp to his landing point? Include units.

Solution: The time it takes for David to reach his landing point has to satisfy $-5 t^{2}+$ $8 t+15=0$. Using the quadratic formula, we have

$$
t=\frac{-8 \pm \sqrt{8^{2}+300}}{-10}=\frac{8 \pm \sqrt{364}}{10}=0.8 \pm \sqrt{3.64}
$$

Thus, $t=0.8+\sqrt{3.64}$ seconds.
b. [5 points] Use the method of completing the square to write the formula for $f(t)$ in vertex form. Carefully show your algebraic work step-by step.

Solution:

$$
\begin{aligned}
f(t)=-5 t^{2}+8 t+15 & =-5\left(t^{2}-\frac{8}{5} t\right)+15 \\
& =-5\left(t^{2}-\frac{8}{5} t+\frac{16}{25}-\frac{16}{25}\right)+15 \\
& =-5\left(t^{2}-\frac{8}{5} t+\frac{16}{25}\right)+\frac{16}{5}+15 \\
& =-5\left(t-\frac{4}{5}\right)^{2}+\frac{91}{5}
\end{aligned}
$$

We rewrote the problem in this page for your convenience
David is a professional extreme athlete. In one of his stunts, he ski jumps off a ski ramp. David's height H (in m) above his landing point, from the moment he leaves the ramp until he lands, is given by the function

$$
H=f(t)=-5 t^{2}+8 t+15 .
$$

In this formula, t is the time (in seconds) after David leaves the ramp.
c. [2 points] What is the exact value of David's maximum height above his landing point during his jump? Include units.

Solution: Since the vertex of the quadratic is at $\left(\frac{4}{5}, \frac{91}{5}\right)$, then the maximum height is at $\frac{91}{5}$ meters.
Answer $=\frac{91}{5}$ or 18.2 meters
d. [2 points] How high is the ramp above his landing point? Include units.

Solution: $\quad f(0)=15$ meters.
Answer: \qquad
e. [4 points] What is the domain and range of $H=f(t)$ in the context of this problem? Express your answer using inequalities or interval notation. Your answer has to be exact.

Solution: Domain: $[0,0.8+\sqrt{3.64}]$, Range: $\left[0, \frac{91}{5}\right]$

