7. [12 points] Include all your work in the following problems to receive full credit.
a. [6 points] At the supermarket, you decide to buy blueberries and mangos. The price of blueberries is $\$ 5.75$ per pound and mangos cost $\$ 3.20$ per pound. Suppose that you spend $\$ 30$ buying B pounds of blueberries and M pounds of mangos. Let f be the function such that $B=f(M)$.
(i) Find a formula for f.

Solution: $\quad 30=5.75 B+3.20 M \Rightarrow B=f(M)=\frac{30-3.20 M}{5.75}$
(ii) Find the vertical intercept of the graph of the function f, and interpret this intercept using complete sentences. Include units, and your answer must be exact or accurate up to 2 decimal places.

Solution: Vertical intercept $=f(0)=\frac{30}{5.75}=5.22$ pounds.
Practical interpretation: The vertical intercept is the number of pounds of blueberries I can buy if I spend all $\$ 30$ buying blueberries.
b. [6 points] A supermarket opens everyday at 8 am and closes at 6 pm . The supermarket manager notices that the amount of clients during a day is given by a quadratic function. Let $C(t)$ be the amount of clients in the supermarket t hours after the store opened. Find a formula for $C(t)$ if there are 250 clients in the store at 10 am , and there are no clients when the store opens and closes.

Solution: Since $C(0)=0$ and $C(10)=0$ and C is a quadratic function, we have that its factored formula is

$$
C(t)=a(t-10) t
$$

for some a. Plug in $(t, C)=(2,250)$ to obtain $250=-16 a$ and solve for $a=-\frac{125}{8}$. Thus, $C(t)=-\frac{125}{8} t(t-10)$.

Solution: Let $C(t)=a t^{2}+b t+c$. Since $C(0)=0$, we have $C(t)=a t^{2}+b t$ for some a, b. Plug in $(10,0)$ to obtain $0=100 a+10 b$ and plug in $(2,250)$ to obtain $250=4 a+2 b$. Hence

$$
0=100 a+10 b \quad 250=4 a+2 b
$$

Solving for a and b, you get $a=-\frac{125}{8}$ and $b=\frac{625}{4}$. Thus, $C(t)=-\frac{125}{8} t^{2}+\frac{625}{4} t$.

