9. [12 points] You would like to investigate the relationship between the swimming speed S (in $\mathrm{cm} / \mathrm{sec}$), the weight w (in kg) and the length l (in cm) of salmon. Let f and g be invertible functions that take as input the length of the salmon and give as output its swimming speed and weight respectively. In other words, $S=f(l)$ and $w=g(l)$. You measured the swimming speed and the length of six salmons. The data you obtained is summarized in the table below.

	Salmon 1	Salmon 2	Salmon 3	Salmon 4	Salmon 5	Salmon 6
l	60	80	50	85	76	40
$S=f(l)$	148	161	140	163	158	130

The graph of g is drawn below.

a. [6 points] Find the value of the following expressions. Include units.

$$
\begin{aligned}
& g^{-1}(100)=\quad f(80)=\square \quad f^{-1}(140)= \\
& \text { Solution: } g^{-1}(100)=76 \mathrm{~cm}, f(80)=161 \mathrm{~cm} / \mathrm{s}, f^{-1}(140)=50 \mathrm{~cm} .
\end{aligned}
$$

b. [2 points] What is the weight of a salmon that swims at a speed of $130 \mathrm{~cm} / \mathrm{sec}$?

Solution: A salmon that can swim at $130 \mathrm{~cm} / \mathrm{sec}$ has length 40 cm . According to the graph, the weight of a salmon 40 cm long is 30 kg .

The graph and table from the previous page has been copied here for your convenience

	Salmon 1	Salmon 2	Salmon 3	Salmon 4	Salmon 5	Salmon 6
l	60	80	50	85	76	40
$S=f(l)$	148	161	140	163	158	130

c. [4 points] Find the average rate of change of the weight of a salmon as a function of its swimming speed over the interval between $S=148$ and $S=158$. Show all your work to receive full credit. Include units.

Solution: When the swimming speed of a salmon is 148 cm per second, its length is 60 cm . If the swimming speed of a salmon is 158 cm per second, its length is 76 cm . The weight of a salmon of 60 cm and 76 cm in length is 55 kg and 100 kg . Hence the average rate of change of the weight of a salmon over the interval between $S=148$ and $S=158$ is given by

$$
\frac{g\left(f^{-1}(158)\right)-g\left(f^{-1}(148)\right)}{158-148}=\frac{100-55}{158-148}=4.5 \quad \frac{\mathrm{~kg}}{\mathrm{~cm} / \mathrm{sec}} .
$$

