8. [12 points] Let

$$
V(x)=-\frac{1}{2} x^{2}+\frac{9}{2} x+\frac{47}{8} \quad \text { for } \quad 0 \leq x \leq 10
$$

be the number of viewers of a 10-minute interview (in millions), x minutes after the interview started.
a. [5 points] Write the quadratic function $V(x)$ in vertex form by completing the square. Show all your work carefully, step by step to receive full credit.

Solution:

$$
\begin{aligned}
& V(x)=-\frac{1}{2}\left(x^{2}-9 x\right)+\frac{47}{8} \\
& V(x)=-\frac{1}{2}\left(x^{2}-9 x+\left(\frac{9}{2}\right)^{2}-\left(\frac{9}{2}\right)^{2}\right)+\frac{47}{8} \\
& V(x)=-\frac{1}{2}\left(\left(x-\frac{9}{2}\right)^{2}-\frac{81}{4}\right)+\frac{47}{8} \\
& V(x)=-\frac{1}{2}\left(x-\frac{9}{2}\right)^{2}+\frac{81}{8}+\frac{47}{8} \\
& V(x)=-\frac{1}{2}\left(x-\frac{9}{2}\right)^{2}+16
\end{aligned}
$$

b. [3 points] In how many minutes after the beginning of the interview did the number of viewers reach its minimum and maximum, respectively?

Solution: The minimum occurs at one of the endpoints. One checks that it occurs at $x=10$. The maximum occurs at the x-coordinate of the vertex i.e., at $x=4.5$.
c. [4 points] For how long will the number of viewers of the interview be more than 10 million? Recall that

$$
V(x)=-\frac{1}{2} x^{2}+\frac{9}{2} x+\frac{47}{8} \quad \text { for } \quad 0 \leq x \leq 10
$$

Solve this problem algebraically. Your answer must be in exact form. Show all your work.

$$
\text { Solution: }-0.5 x^{2}+4.5 x+\frac{47}{8}=10 \quad \text { or } \quad-0.5 x^{2}+4.5 x-4.125=0
$$

Using the quadratic formula we get two solutions in the function's domain:

$$
x=4.5 \pm \sqrt{(4.5)^{2}-4(-0.5)(-4.125)}=4.5 \pm 2 \sqrt{3} .
$$

Hence the number of viewers is larger than 10 millions for $4 \sqrt{3}$ minutes.

