4. [9 points] In both parts of this problem, you should show your work and write your final answers in the spaces provided. Note that part (b) is independent of part (a).
a. [4 points] When the brakes on a car are applied at full force while the car is moving, the car does not just come to an immediate halt. In fact, a car initially traveling at a speed v (measured in meters per second) will travel an additional $D(v)$ meters before coming to a complete stop, where

$$
D(v)=v\left(2+\frac{v}{14}\right) \quad \text { for } v \geq 0
$$

If it took a car 100 meters to come to a complete stop, how fast was it moving before the brakes were applied? Your final answer should be found algebraically and can be exact or accurate to three decimal places.

The car was traveling at a speed of
b. [5 points] Martin is visiting the planet Nomae and throws a rock vertically upwards into the air. It takes the rock 0.5 seconds for it to reach its maximum height of 4 meters above the ground, and the rock was 1.5 meters above the ground when Martin released it. Find a formula for the height $h(t)$ (in meters) of the rock above the ground in terms of the time t (in seconds) elapsed since the rock was released, given that $h(t)$ is a quadratic function of t.

$$
h(t)=
$$

\qquad

