3. [13 points] In part (a) of this problem, you should show your work and make sure your answers are exact. Note that part (b) is independent of part (a).
a. [9 points] There are $T(d)$ termites in an abandoned house on day d. Starting at $d=0$, the population of termites increases by 30% each day, and reaches a peak of 28,561 termites at $d=4$. Starting at $d=4$, the termite population declines at a constant rate, up until $d=8$ when there are no termites left. Write a piecewise-defined formula for $T(d)$ in terms of d in the spaces provided.

Solution: From the information above, we see that $T(d)$ is exponential on $0 \leq d \leq 4$ and linear on $4<d \leq 8$.

For $0 \leq d \leq 4$: We know $T(d)$ is exponential with percentage growth rate 0.3 , so $T(d)=a(1.3)^{d}$. To find a, we know that $T(4)=28,561$, so $a(1.3)^{4}=28,561$. Dividing by 1.3^{4} gives us $a=10,000$.

For $4<d \leq 8$: We know $T(d)$ is linear with average rate of change:

$$
\frac{0-28,561}{4}=-7,140.25
$$

Since $T(8)=0$, using point-slope form gives us $T(d)=-7,140.25(d-8)$.

b. [4 points] The termites at the abandoned house have begun attracting birds. The number of birds B, along with the temperature T (in ${ }^{\circ} \mathrm{F}$) and the wind speed W (in miles per hour) have been recorded at various times h, where h is measured in hours after 8 a.m. on October 10.

h	0	1	2	3	4	5
B	10	11	15	13	11	5
T	30	33	40	39	33	31
W	14	10	13	12	11	10

Based on the table above, which of the following statments could be true about h, B, T and W ? Circle all that apply.

B is a function of T	T is a function of B	W is a function of B
B is a function of W	h is a function of T	W is a function of T

