- **3.** [13 points] In part (a) of this problem, you should **show your work** and make sure your answers are **exact**. Note that part (b) is independent of part (a).
 - a. [9 points] There are T(d) termites in an abandoned house on day d. Starting at d = 0, the population of termites increases by 30% each day, and reaches a peak of 28,561 termites at d = 4. Starting at d = 4, the termite population declines at a constant rate, up until d = 8 when there are no termites left. Write a piecewise-defined formula for T(d) in terms of d in the spaces provided.

Solution: From the information above, we see that T(d) is exponential on $0 \le d \le 4$ and linear on $4 < d \le 8$.

For $0 \le d \le 4$: We know T(d) is exponential with percentage growth rate 0.3, so $T(d) = a(1.3)^d$. To find a, we know that T(4) = 28,561, so $a(1.3)^4 = 28,561$. Dividing by 1.3^4 gives us a = 10,000.

For $4 < d \le 8$: We know T(d) is linear with average rate of change:

$$\frac{0 - 28,561}{4} = -7,140.25$$

Since T(8) = 0, using point-slope form gives us T(d) = -7,140.25(d-8).

$$T(d) = \begin{cases} 10,000(1.3)^d & \text{if } 0 \le d \le 4 \\ -7,140.25(d-8) & \text{if } 4 < d \le 8 \end{cases}$$

b. [4 points] The termites at the abandoned house have begun attracting birds. The number of birds B, along with the temperature T (in °F) and the wind speed W (in miles per hour) have been recorded at various times h, where h is measured in hours after 8 a.m. on October 10.

h	0	1	2	3	4	5
B	10	11	15	13	11	5
T	30	33	40	39	33	31
W	14	10	13	12	11	10

Based on the table above, which of the following statements could be true about h, B, T and W? Circle all that apply.

$$B$$
 is a function of T

$$T$$
 is a function of B

W is a function of B

B is a function of W

h is a function of T

W is a function of T