3. [13 points] In part (a) of this problem, you should **show your work** and make sure your answers are **exact**. Note that part (b) is independent of part (a).

a. [9 points] There are \(T(d) \) termites in an abandoned house on day \(d \). Starting at \(d = 0 \), the population of termites increases by 30% each day, and reaches a peak of 28,561 termites at \(d = 4 \). Starting at \(d = 4 \), the termite population declines at a constant rate, up until \(d = 8 \) when there are no termites left. Write a **piecewise-defined** formula for \(T(d) \) in terms of \(d \) in the spaces provided.

Solution: From the information above, we see that \(T(d) \) is exponential on \(0 \leq d \leq 4 \) and linear on \(4 < d \leq 8 \).

For \(0 \leq d \leq 4 \): We know \(T(d) \) is exponential with percentage growth rate 0.3, so \(T(d) = a(1.3)^d \). To find \(a \), we know that \(T(4) = 28,561 \), so \(a(1.3)^4 = 28,561 \). Dividing by 1.34 gives us \(a = 10,000 \).

For \(4 < d \leq 8 \): We know \(T(d) \) is linear with average rate of change: \[
\frac{0 - 28,561}{4} = -7,140.25
\]
Since \(T(8) = 0 \), using point-slope form gives us \(T(d) = -7,140.25(d - 8) \).

\[
T(d) = \begin{cases}
10,000(1.3)^d & \text{if } 0 \leq d \leq 4 \\
-7,140.25(d - 8) & \text{if } 4 < d \leq 8
\end{cases}
\]

b. [4 points] The termites at the abandoned house have begun attracting birds. The number of birds \(B \), along with the temperature \(T \) (in °F) and the wind speed \(W \) (in miles per hour) have been recorded at various times \(h \), where \(h \) is measured in hours after 8 a.m. on October 10.

<table>
<thead>
<tr>
<th>(h)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>10</td>
<td>11</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>(T)</td>
<td>30</td>
<td>33</td>
<td>40</td>
<td>39</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>(W)</td>
<td>14</td>
<td>10</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Based on the table above, which of the following statements could be true about \(h \), \(B \), \(T \) and \(W \)? **Circle all that apply.**

- \(B \) is a function of \(T \)
- \(T \) is a function of \(B \)
- \(W \) is a function of \(B \)
- \(B \) is a function of \(W \)
- \(h \) is a function of \(T \)
- \(W \) is a function of \(T \)