4. [9 points] In both parts of this problem, you should show your work and write your final answers in the spaces provided. Note that part (b) is independent of part (a).
a. [4 points] When the brakes on a car are applied at full force while the car is moving, the car does not just come to an immediate halt. In fact, a car initially traveling at a speed v (measured in meters per second) will travel an additional $D(v)$ meters before coming to a complete stop, where

$$
D(v)=v\left(2+\frac{v}{14}\right) \quad \text { for } v \geq 0
$$

If it took a car 100 meters to come to a complete stop, how fast was it moving before the brakes were applied? Your final answer should be found algebraically and can be exact or accurate to three decimal places.

Solution: We need to find the values of v for which $D(v)=100$. This happens when $\frac{1}{14} v^{2}+2 v-$ $100=0$ which, by the quadratic formula, means:

$$
v=\frac{-2 \pm \sqrt{4+\frac{400}{14}}}{\frac{1}{7}}
$$

so $v \approx 25.950$ or $v \approx-53.950$. Since we have $v \geq 0$ in the problem, this means that the car was traveling at approximately 25.950 meters per second.

The car was traveling at a speed of \qquad $25.950 \mathrm{~m} / \mathrm{s}$
b. [5 points] Martin is visiting the planet Nomae and throws a rock vertically upwards into the air. It takes the rock 0.5 seconds for it to reach its maximum height of 4 meters above the ground, and the rock was 1.5 meters above the ground when Martin released it. Find a formula for the height $h(t)$ (in meters) of the rock above the ground in terms of the time t (in seconds) elapsed since the rock was released, given that $h(t)$ is a quadratic function of t.

Solution: We know that $h(t)$ is a quadratic function with vertex $(0.5,4)$, and hence $h(t)=a(t-$ $0.5)^{2}+4$. We also know that $h(0)=1.5$, so $a(-0.5)^{2}+4=1.5$, and hence $a=\frac{-2.5}{0.25}=-10$.

$$
h(t)=\quad-10(t-0.5)^{2}+4
$$

