5. [11 points] In both parts of this problem, you should show your work, and make sure your answers are exact and written in the spaces provided.
a. [6 points] Kayla was cultivating a strain of bacteria in her lab, and noticed that the mass of her bacterial culture was growing exponentially. She started the experiment at 9 a.m. and ended it at 5 p.m., at which point she had 234 grams of bacteria. Find a formula expressing the mass of her culture $m(t)$ (in grams) as a function of the time t, measured in hours after 9 a.m., given that the mass of her culture was 20 grams at noon.

Solution: Since $m(t)$ is exponential, our formula is of the form $m(t)=a b^{t}$ for some constants a and b. We know that $m(3)=20$ and $m(8)=234$, which gives us:

$$
\begin{aligned}
a b^{8} & =234 \\
a b^{3} & =20
\end{aligned}
$$

and dividing the first equation by the second gives us:

$$
b^{5}=11.7
$$

so $b=11.7^{\frac{1}{5}}$. To get a, we plug this back into the second equation, which gives us:

$$
a\left(11.7^{\frac{1}{5}}\right)^{3}=20
$$

and so $a=20 \cdot 11.7^{-\frac{3}{5}}$.

$$
m(t)=\frac{20 \cdot 11.7^{-\frac{3}{5}} \cdot\left(11.7^{\frac{1}{5}}\right)^{t}}{}
$$

b. [5 points] A 10 liter bottle is filled completely with a combination of oil and vinegar. Each kilogram of oil takes up 1.25 liters, while each kilogram of vinegar takes up 1 liter. Let $N(\ell)$ be the amount of vinegar (measured in kilograms) in the bottle when it is filled with ℓ kilograms of oil. Find a formula for $N(\ell)$ in terms of ℓ and indicate the domain on which your formula is valid. Note: there are practical considerations for your domain in this problem.

Solution: Since the oil and vinegar fill up the bottle completely, we have $(1.25 \cdot \ell)+(1 \cdot N(\ell))=10$, and so $N(\ell)=10-1.25 \cdot \ell$. Of course, ℓ cannot be negative, and the largest ℓ can be is when the bottle is filled with oil and has no vinegar. In other words, ℓ is the largest when $1.25 \ell=10$ and therefore $\ell=8$. So the domain of $N(\ell)$ is $0 \leq \ell \leq 8$.

$$
N(\ell)=\ldots \text {, with domain } \quad 0 \leq \ell \leq 8
$$

