8. [12 points] Let $f(x) = a^x$ and g(x) = c + dx where a, c and d are constants. The graph of y = f(x) and y = g(x) are shown below. The point of intersection not lying on the y-axis has coordinates (x_0, y_0) .

- **a**. [10 points] In each of the bullet points below, you are asked to **circle** the option that must be true based on the graph above. If there is not enough information to decide on any of the options in a given row, circle NOT ENOUGH INFORMATION.
 - The constants a and c satisfy:

		a - c	NOT ENOUGH
u > c	u < c	u = c	INFORMATION

• The constants *a* and *d* satisfy:

$$a > d$$
 $a < d$ NOT ENOUGHINFORMATIONINFORMATION

• The constants c and d satisfy:

$$c > d$$
 $c < d$ NOT ENOUGHINFORMATIONINFORMATION

• If the constants a and c remain the same while the value of the constant d increases, then the value of x_0 , the x-coordinate of the point of intersection of $f(x) = a^x$ and g(x) = c + dx:

INCREASES	DECDEASES	STAVE THE SAME	NOT ENOUGH
	DECREASES	STATS THE SAME	INFORMATION

• If the constants a and c remain the same while the value of the constant d increases, then the value of y_0 , the y-coordinate of the point of intersection of $f(x) = a^x$ and g(x) = c + dx:

INCREASES	DECREASES	STAVE THE SAME	NOT ENOUGH
		STATS THE SAME	INFORMATION

b. [2 points] The graph of the function h(x) has a vertical intercept at (0, -2) and is perpendicular to the graph of g(x) = c + dx. Find a formula for the function h(x). Your formula may include any or all of the constants a, c and d.

Solution: The slope of h(x) must be $-\frac{1}{d}$. Since it has vertical intercept -2, its equation must therefore be $h(x) = -\frac{1}{d}x - 2$.

$$h(x) = \underline{\qquad \qquad -\frac{1}{d}x - 2}$$