7. [11 points] Gretchen has managed to synthesize an even more powerful growth stimulant, Chemical Y. She administers it to a freshly hatched mealworm, and observes the mealworm’s growth over the next few days. Let \(M(t) \) denote the mass (in grams) of the mealworm \(t \) weeks after it hatches. Gretchen makes the following measurements. You do not have to show your work for this problem.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(M(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
</tbody>
</table>

a. [3 points] What type of function COULD \(M(t) \) be? Circle all that apply. If none apply, circle “none of these”.

- linear
- quadratic
- exponential
- none of these

b. [4 points] Gretchen next tests Chemical Y on a silkworm. Let \(S(t) \) be the mass (in grams) of the silkworm \(t \) weeks after it hatches. Give a practical interpretation of \(S(t) = M(t+2) \).

Solution:
When both are on Chemical Y, the mass of a silkworm is equal to the mass of a mealworm that has hatched 2 weeks earlier.

c. [4 points] Gretchen tests Chemical Y on a cockroach. The cockroach weighs \(C(t) \) grams \(t \) weeks after it hatches. Gretchen has found that \(C(t) \) has the formula \(C(t) = 2(1.3)^{t-2} \). Leave your answers in exact form.

(i) The weekly growth factor of \(C(t) \) is \(1.3^{2.5} \).
(ii) The vertical intercept of \(C(t) \) is \(2 \cdot 1.3^{-2} \).