
8. [6 points] Consider the following graph of two functions with their formulas given. The letters A, B, r, p are all constants.

Compare the two quantities given by putting one of the symbols ">", "<", or "=" in the blank provided. If the relationship between the quantities cannot be determined, write "N" in the blank. You do not have to show your work.

- (i) $A \leq B$ (ii) $r \geq p$ (iii) $\lim_{x \to \infty} A(1+r)^x = \lim_{x \to \infty} B(1+p)^x$
- **9.** [10 points] Suppose L(t) is a linear function, Q(t) is a quadratic function, and E(t) is an exponential function, each with domain all real numbers. Also, assume that E(3) = 1. For each of the following statements, circle the correct option.

a. [2 points] The graphs of E(t) and L(t) intersect exactly once.

must be true

	must be true	could be true	never true
b . [2 points]	E(-1) is negative.		
	must be true	could be true	never true
c . [2 points]	The graphs of $Q(t)$ and $L(t)$ intersect exactly twice.		
	must be true	could be true	never true
d . [2 points]	The graph of $E(t)$ is concave up.		
	must be true	could be true	never true
e . [2 points]	The graphs of $Q(t)$ and	Q(t+2) - 5 intersect	exactly twice.

could be true

never true