1. [10 points] Given below are three functions. $r(w)$ is given by a graph, $h(t)$ is given by a formula, and $n(v)$ is described verbally.
$n(v)$ has a constant rate of change, and its graph passes through the points $(1,4)$ and $(3,0)$.

$$
h(t)=\sqrt{t-4} .
$$

The function $r(w)$ is linear on $[-2,0]$ and on $[2,4]$. Give your answer in exact form (i.e. no decimal approximations) for parts a.-c.
a. [2 points] Complete the sentence by filling in the blank. You can express your answer in inequality or interval notation.

The domain of $h(t)$ is \qquad .
b. [2 points] Complete the sentence by filling in the blank. You can express your answer in inequality or interval notation.

The range of $r(w)$ is \qquad .
c. [2 points] Complete the sentence by filling in the blank.

The average rate of change of $h(t)$ between $t=6$ and $t=9$ is \qquad .
d. [4 points] Find all solutions to the equation

$$
n(r(w))=-2 .
$$

If there is no solution, write "no solution" in the blank. Show your work. (If needed, use the graph of $r(w)$ to give estimates for values of w in the interval $[0,2]$. Otherwise, give your answer in exact form.)
\qquad

$$
=
$$

