7. [15 points] In one of his experiments, David recorded the speeds (in $\mathrm{km} / \mathrm{sec}$) of two different particles, particle A and particle B , for 8 seconds.
Let $S(t)$ be the difference between the recorded speeds of the two particles (in $\mathrm{km} / \mathrm{sec}$) t seconds after the beginning of the experiment, i.e. $S(t)=$ (speed of particle A)-(speed of particle B).
David found that $S(t)=-\frac{5}{8} t^{2}+5 t-4$.
a. [5 points] Find both coordinates of the maximum of $S(t)$ by completing the square. Show your work step-by-step.
$S(t)$ has a maximum at \qquad
b. [4 points] Find all t-values when the speeds of the two particles are equal to each other. Be sure to show your work and give you answer in exact form.
c. [3 points] The average rate of change of $S(t)$ between $t=2$ and $t=5$ is $0.625 \frac{\mathrm{~km} / \mathrm{sec}}{\mathrm{sec}}$. Give a practical interpretation for this average rate of change.
d. [3 points] Find all t-values in the practical domain of $S(t)$ when particle B is moving faster than particle A.
