1. [10 points] Given below are three functions. \(r(w) \) is given by a graph, \(h(t) \) is given by a formula, and \(n(v) \) is described verbally.

\(n(v) \) has a constant rate of change, and its graph passes through the points \((1, 4)\) and \((3, 0)\).

\[h(t) = \sqrt{t - 4}. \]

The function \(r(w) \) is linear on \([-2, 0]\) and on \([2, 4]\). Give your answer in exact form (i.e. no decimal approximations) for parts a.-c.

a. [2 points] Complete the sentence by filling in the blank. You can express your answer in inequality or interval notation.

The domain of \(h(t) \) is \([4, \infty)\).

b. [2 points] Complete the sentence by filling in the blank. You can express your answer in inequality or interval notation.

The range of \(r(w) \) is \([1, 4]\).

c. [2 points] Complete the sentence by filling in the blank.

The average rate of change of \(h(t) \) between \(t = 6 \) and \(t = 9 \) is \(\frac{\sqrt{9} - 4 - \sqrt{6} - 4}{9 - 6} = \frac{\sqrt{5} - \sqrt{2}}{3} \).

d. [4 points] Find all solutions to the equation

\(n(r(w)) = -2. \)

If there is no solution, write “no solution” in the blank. Show your work. (If needed, use the graph of \(r(w) \) to give estimates for values of \(w \) in the interval \([0, 2]\). Otherwise, give your answer in exact form.)

Solution: \(n(v) = -2(v - 1) + 4. \) Therefore, \(n(r(w)) = -2(r(w) - 1) + 4. \)

\[
\begin{align*}
n(r(w)) &= -2 \\
-2(r(w) - 1) + 4 &= -2 \\
-2r(w) + 6 &= -2 \\
-2r(w) &= -8 \\
r(w) &= 4
\end{align*}
\]

\(w = \frac{2}{3}, 2 \).