10. [10 points] The graph below shows the functions $\ell(x), q(x)$ and $e(x)$. The letters k, p, d are unknown constants. You do not need to show your work for this problem.

- $\ell(x)$ is a linear function with formula $\ell(x)=-k x+p$.
- $\ell(x)$ has an x-intercept between 1 and 1.5.
- $e(x)$ is a transformation of an exponential function with growth factor k.
- $e(x)$ has a horizontal asymptote $y=1$.
- $q(x)$ is a quadratic function with a zero at $(d, 0)$.
- The axis of symmetry of $q(x)$ is at $x=1.5$.

a. [6 points] Circle one correct answer.
i. [2 points] A possible formula for $e(x)$ is:

$$
p k^{x}+1 \quad p k^{x} \quad p(1+k)^{x}+1 \quad \begin{gathered}
(p-1) k^{x}+1 \\
\text { None } \\
\text { of these }
\end{gathered}
$$

ii.[2 points] The x-intercept of the function $\ell(x)$ is:
$\frac{p}{k}$
$\frac{k}{p}$
1
None
of these
iii.[2 points] The point A is the other zero of $q(x)$. The coordinates of point A are:
$(-d, 0)$
$(0,-d)$
$(d-1.5,0)$
$(3-d, 0)$
None of these
b. [4 points] If $q(x)=a x^{2}+b x+c$ for some constants a, b and c, rank the quantities $p, 0, k, 1, a$ in ascending order:

