7. [15 points] In one of his experiments, David recorded the speeds (in $\mathrm{km} / \mathrm{sec}$) of two different particles, particle A and particle B , for 8 seconds.
Let $S(t)$ be the difference between the recorded speeds of the two particles (in $\mathrm{km} / \mathrm{sec}$) t seconds after the beginning of the experiment, i.e. $S(t)=($ speed of particle A)-(speed of particle B).
David found that $S(t)=-\frac{5}{8} t^{2}+5 t-4$.
a. [5 points] Find both coordinates of the maximum of $S(t)$ by completing the square. Show your work step-by-step.

Solution:

$$
\begin{aligned}
S(t) & =-\frac{5}{8} t^{2}+5 t-4 \\
& =-\frac{5}{8}\left(t^{2}-8 t\right)-4 \\
& =-\frac{5}{8}\left(t^{2}-8 t+16-16\right)-4 \\
& =-\frac{5}{8}\left(t^{2}-8 t+16\right)+10-4 \\
& =-\frac{5}{8}(t-4)^{2}+6
\end{aligned}
$$

$S(t)$ has a maximum at
b. [4 points] Find all t-values when the speeds of the two particles are equal to each other. Be sure to show your work and give you answer in exact form.

Solution: $\quad S(t)=0 \Rightarrow-\frac{5}{8} t^{2}+5 t-4=0$. Using the quadratic formula, we get $t_{1,2}=\frac{-5 \pm \sqrt{25-4(-4)\left(-\frac{5}{8}\right)}}{2\left(-\frac{5}{8}\right)}=\frac{-5 \pm \sqrt{15}}{-\frac{5}{4}}=4 \pm \frac{4}{5} \sqrt{15}$.
c. [3 points] The average rate of change of $S(t)$ between $t=2$ and $t=5$ is $0.625 \frac{\mathrm{~km} / \mathrm{sec}}{\mathrm{sec}}$. Give a practical interpretation for this average rate of change.

Solution: Between the second and the fifth second, the difference of the recorded speeds of the two particles increases by $0.625 \mathrm{~km} / \mathrm{sec}$ every second on average.
d. [3 points] Find all t-values in the practical domain of $S(t)$ when particle B is moving faster than particle A.

Solution: We need to determine the t-values for which $S(t)<0$.
t is in $\left[0,4-\frac{4}{5} \sqrt{15}\right) \cup\left(4+\frac{4}{5} \sqrt{15}, 8\right]$.

