10. [8 points] The functions $D(x), E(x)$, and $Q(x)$ are pictured below.

Suppose that

- $D(x)=d(1+r)^{x}$ is an exponential function.
- $E(x)=(1+h)^{x}$ is an exponential function.
- $Q(x)=a x^{2}+c$ is a quadratic function.
- $D(x)$ and $E(x)$ intersect at the point (n, p).

In the formulas above, a, c, d, h, n, p, r are constants.
In each of the bullet points below, you are asked to circle the option that must be true based on the graph above. If there is not enough information to decide on any of the options in a given row, circle N/A.

- The constants r and h satisfy:

$$
\begin{array}{llll}
r<h & r>h & r=h & \text { N/A }
\end{array}
$$

- The constants c and d satisfy:

$$
c<d \quad c>d \quad \text { c=d } \quad \text { N/A }
$$

- The constants a and h satisfy:

$$
a<h
$$

$$
a>h
$$

$$
a=h
$$

$$
\mathrm{N} / \mathrm{A}
$$

- Suppose that we decrease the value of r. Then the value of n :

Increases
Decreases
Stays the Same
N/A

