4. [8 points] A new cryptocurrency ExpCoin was created to have its value grow exponentially over time. The value, in dollars, of one ExpCoin t years after ExpCoin was invented is given by

$$
V(t)=900(3)^{2 t-2} .
$$

Fill in the blanks below with correct numbers given in exact form.
a. [2 points]

One ExpCoin was worth \$ \qquad 100 when ExpCoin was invented.
b. [2 points]

The yearly growth factor of ExpCoin is \qquad -
c. [4 points]

The value of one ExpCoin grows by $\quad 100\left(9^{1 / 365}-1\right) \quad \%$ per day.
Note that this problem is about the daily not yearly growth rate. Assume for this problem that there are 365 days in one year.
Solution: Note that the daily growth factor is $9^{1 / 365}$, hence the result above.
5. [10 points] At Rowena's trading card store, she sells regular cards and foil cards. All the cards are rated on their rarity R which is a number between 0 and 15 . A regular card of rarity R costs $h(R)$ dollars, while a foil card of rarity R costs $f(R)$ dollars. Suppose both $h(R)$ and $f(R)$ have inverse functions.
a. [3 points] Give a practical interpretation of the expression $h^{-1}(12)$.

Solution: $h^{-1}(12)$ is the rarity of a card worth $\$ 12$.
b. [3 points]

Write an equation, possibly involving the functions h and f, that expresses the following: "A regular card of rarity 7 costs $\$ 100$ more than twice the cost of a foil card of rarity 3 ."
Solution: $\quad h(7)=100+2 f(3)$
c. [4 points]

Give a practical interpretation of the equation $h\left(f^{-1}(729)\right)=180$.
Solution: A regular card, with the same rarity of a foil card that costs $\$ 729$, costs $\$ 180$. or:
A foil card worth $\$ 729$ would be worth $\$ 180$ if it was a regular card.

