- **6.** [9 points] Zunari wants to bake bread to sell in his store. However, he is not a baker, and despite knowing individual conversions, forgets how to put them all together. Here is what he knows:
 - The weight of f cups of flour is K(f) kilograms.
 - From q kilograms of flour, he can make D(q) kilograms of dough.
 - x kilograms of dough weigh P(x) pounds.
 - From x kilograms of dough, he can make L(x) loaves of bread.
 - Selling ℓ loaves of bread, he collects a total of $C(\ell)$ dollars.

Formulas for each of the functions above are given in the following table. Assume the inputs for all functions in the table must be at least one.

K(f)	0.14f
D(q)	3.5q - 1
P(x)	2.2x
L(x)	2x - 0.5
$C(\ell)$	$4\ell + 2$

a. [2 points] Suppose Zunari can make H(f) loaves of bread from f cups of flour, where H(f) is a composition of the above functions. Express H(f) as a composition of functions.

Solution:

$$H(f) = L(D(K(f)))$$

b. [3 points]

Find an explicit formula for H(f).

(i.e. Your answer should not involve any of the letters K, D, P, L, C).

Solution:

$$H(f) = 2(3.5(.14f) - 1) - .5$$

= .98f - 2.5

c. [4 points]

If $M = C(\ell)$, find an explicit formula for $C^{-1}(M)$.

Solution: To solve for the inverse, we solve for the output variable in terms of the input variable.

$$M = 4\ell + 2$$

$$M - 2 = 4\ell$$

$$\frac{M - 2}{4} = \ell = C^{-1}(M)$$