7. [15 points] In the table below, there is at least one function that could be exponential and one that could be linear.

q	1	4	5
A(q)	17	$\frac{11}{3}$	5
B(q)	$\frac{8}{3}$	9	$\frac{27}{2}$
C(q)	125	25	1
D(q)	$\frac{3}{2}$	2	$\frac{13}{6}$

a. [3 points]

Which of the above functions could be linear? Circle your answer(s). You do not have to show your work for this part.

$$A(q)$$
 $B(q)$ $C(q)$ $D(q)$

b. [3 points]

Which of the above functions could be exponential? Circle your answer(s). You do not have to show your work for this part.

- A(q) B(q) C(q) D(q)
- c. [4 points]

Find a possible formula for one of the functions above that you found could be linear. Show your work, and circle your answer.

Solution: The slope of D(q) is $\frac{1}{6}$, so $D(q) = \frac{q}{6} + c$. Using the point (4, 2), we see that $c = \frac{4}{3}$, so

$$D(q) = \frac{q}{6} + \frac{4}{3}$$

d. [5 points]

Find a possible formula for one of the functions above that you found could be exponential. Show your work, and circle your answer.

Solution: Using the last two columns of the table, we get that the growth factor for B(q) is given by

$$\frac{27}{2} \cdot \frac{1}{9} = \frac{3}{2}$$

so that $B(q) = a(\frac{3}{2})^q$. Using the point $(1, \frac{8}{3})$, we get that

$$\frac{8}{3} = a(\frac{3}{2})$$

so that $a = \frac{16}{9}$, hence

$$B(q) = \frac{16}{9} (\frac{3}{2})^q$$