7. [15 points] In the table below, there is at least one function that could be exponential and one that could be linear.

q	1	4	5
$A(q)$	17	$\frac{11}{3}$	5
$B(q)$	$\frac{8}{3}$	9	$\frac{27}{2}$
$C(q)$	125	25	1
$D(q)$	$\frac{3}{2}$	2	$\frac{13}{6}$

a. [3 points]

Which of the above functions could be linear? Circle your answer(s). You do not have to show your work for this part.
A(q)
$B(q)$
$C(q)$
$D(q)$
b. [3 points]

Which of the above functions could be exponential? Circle your answer(s). You do not have to show your work for this part.
$A(q)$
$B(q)$
$C(q)$
$D(q)$
c. [4 points]

Find a possible formula for one of the functions above that you found could be linear. Show your work, and circle your answer.

Solution: The slope of $D(q)$ is $\frac{1}{6}$, so $D(q)=\frac{q}{6}+c$. Using the point $(4,2)$, we see that $c=\frac{4}{3}$, so

$$
D(q)=\frac{q}{6}+\frac{4}{3}
$$

d. [5 points]

Find a possible formula for one of the functions above that you found could be exponential. Show your work, and circle your answer.

Solution: Using the last two columns of the table, we get that the growth factor for $B(q)$ is given by

$$
\frac{27}{2} \cdot \frac{1}{9}=\frac{3}{2}
$$

so that $B(q)=a\left(\frac{3}{2}\right)^{q}$. Using the point $\left(1, \frac{8}{3}\right)$, we get that

$$
\frac{8}{3}=a\left(\frac{3}{2}\right)
$$

so that $a=\frac{16}{9}$, hence

$$
B(q)=\frac{16}{9}\left(\frac{3}{2}\right)^{q}
$$

