8. [12 points] Top Norwegian skier, Wallace, is participating in the ski jumping world championship. During his practice jump, his height (in meters) above his landing spot on the ground t seconds after going airborne is given by $h=A(t)=-4.9 t^{2}+15 t+60$.

Throughout this problem include units, and express your answers in exact form or round your answers to three decimal places. Be sure show all the steps needed to get your answers, and circle your final answer. Answers with no work shown will not receive credit.
a. [2 points]

How high above his landing spot was Wallace when he first went airborne?
Solution: 60 meters
b. [4 points]

At what time t does Wallace land on the ground?
Solution: Using the quadratic formula, the roots are given by

$$
t=\frac{-15 \pm \sqrt{(15)^{2}+4(4.9)(60)}}{-9.8}
$$

One of the solutions is negative, hence doesn't make sense in the context of the problem. We throw that one out, so that the only correct solution is

$$
t=\frac{-15-\sqrt{(15)^{2}+4(4.9)(60)}}{-9.8} \approx 5.350
$$

c. [6 points]

A daredevil skier, V, did a stunt jump with a jetpack on their back. Suppose that the quadratic function $B(t)$ gives V's height (in meters) above their landing spot t seconds after going airborne. From the reports, it was gathered that V's jump lasted 8 seconds, that they jumped from a height of 48 meters above ground, and that they reached maximum height 3 seconds after they went airborne. Find a formula for $B(t)$.

Solution:

If using vertex form: $B(t)=a(t-3)^{2}+k$. Using the two intercepts, we have

$$
\begin{aligned}
& 48=a(9)+k \\
& 0=a(25)+k
\end{aligned}
$$

Solving the system of equations gives $a=-3$ and $k=75$, so that $B(t)=-3(t-3)^{2}+75$.
Alternatively, one can use factored form. Knowing we have a root at $t=8$, and using the symmetry of the parabola, the other root is at $t=-2$, so that $B(t)=c(t-8)(t+2)$. Using $B(0)=48$, we get $c=-3$, so $B(t)=-3(t-8)(t+2)$.

