9. [15 points] Below is a graph of a function $J(w)$ and a table of values for a function $T(z)$. The grid on the graph is made up of squares of side length one.

z	-3	-2	3	4	9
$T(z)$	9	3	1	3	c

a. [3 points]

Suppose the average rate of change of $T(z)$ between $z=-3$ and $z=9$ is 2.5 . Find c.

Solution:

$$
\begin{gathered}
\frac{c-9}{9-(-3)}=2.5 \\
c=39
\end{gathered}
$$

\qquad
b. [4 points]

Find all solutions to the equation

$$
T(J(w))=3
$$

using only the information about $J(w)$ and $T(z)$ above. Find exact answers if possible, or estimate using the grid if needed. Circle your final answer(s).

Solution: We look at which inputs of $T(z)$ are needed to get output 3. From the table, we need an input of -2 or 4 , hence we need to look at what inputs of $J(w)$ give those outputs. From the graph, we see that we get two valid inputs

$$
w=-4,0
$$

c. [8 points]
$J(w)$ is comprised of a linear piece and a quadratic piece. Find a piecewise-defined function for $J(w)$. Circle your answer.
Solution: The piecewise function consists of a linear part followed by a quadratic part. From the graph, the linear part goes between $(-4,-2)$ and $(0,4)$, so we deduce that the linear function is $\frac{3}{2} w+4$. For the quadratic part, we have two zeros at $w=1$ and $w=3$, so we put it into factored form $a(w-1)(w-3)$. Using the point $(0,4)$, we deduce that $a=\frac{4}{3}$. Putting them together into the a piecewise function gives

$$
J(w)= \begin{cases}\frac{3}{2} w+4 & -4 \leq w<0 \\ \frac{4}{3}(w-1)(w-3) & 0 \leq w<4\end{cases}
$$

