4. [9 points] Let $h(w)$ be a function, with values given in the following table:

w	1	2	4
$h(w)$	8	10	14

a. [2 points] Briefly explain why $h(w)$ could be a linear function of w, and find a linear formula for $h(w)$. For the rest of the problem, assume that $h(w)$ is linear.

Solution: We need to check that the rate of change of $h(w)$ is constant. The two rates of change we can calculate from the table are $\frac{h(2)-h(1)}{2-1}=\frac{10-8}{1}=2$ and $\frac{h(4)-h(2)}{4-2}=\frac{14-10}{2}=2$, and so the rate of change is constant and thus $h(w)$ could be linear. Now, we find a formula for $h(w)$. We know already that the rate of change is 2 , and this is just the slope. So, we plug in a point (say $(1,8)$) to find the h-intercept:

$$
\begin{aligned}
h(w) & =2 w+b \\
8 & =2(1)+b \\
6 & =b .
\end{aligned}
$$

Thus, we know that

$$
h(w)=2 w+6 .
$$

b. [3 points] Let $q(w)$ be a quadratic function of w, where $q(w)$ has its vertex at $(1,8)$ and passes through the w-intercept of $h(w)$. Find a formula for $q(w)$.

Solution: We use vertex form: since the vertex of $q(w)$ is at $(1,8)$, we can write

$$
q(w)=a(w-1)^{2}+8
$$

We just need to find a, and to do so we plug in any other point on the graph of $q(w)$. We're told that the w-intercept of $h(w)$ is on the graph, so let's find that. We set $h(w)=0$ and solve:

$$
\begin{aligned}
2 w+6 & =0 \\
2 w & =-6 \\
w & =-3 .
\end{aligned}
$$

Thus the point $(-3,0)$ is on the graph of $q(w)$. Plugging this in:

$$
0=a(-3-1)^{2}+8
$$

Solving for a, we get $a=-1 / 2$. So, we have

$$
q(w)=-\frac{1}{2}(w-1)^{2}+8
$$

c. [1 point] Is the graph of $q(w)$ concave up or concave down?

Solution: Because $a=-1 / 2<0$, the graph is concave down. (You can also note that since the vertex of $q(w)$ is above the horizontal axis, if the graph were concave up it would "open upward" and could have no zeroes.)
d. [3 points] Find the zeroes of $q(w)$.

Solution: We set $q(w)=0$ and solve for w :

$$
\begin{gathered}
-\frac{1}{2}(w-1)^{2}+8=0 \\
-\frac{1}{2}(w-1)^{2}=-8 \\
(w-1)^{2}=16 \\
w-1= \pm 4 \\
w=1 \pm 4 \\
w=-3,5
\end{gathered}
$$

(You can also use symmetry: we know already that $q(w)$ passes through $(-3,0)$, and is symmetric about the vertical line $x=1$ passing through its vertex. Since the distance from $x=-3$ to $x=1$ is 4 , the next zero occurs 4 after $x=1$, i.e., at $x=5$.)

