6. [8 points] The parts of this problem are unrelated.
a. [5 points] The following table gives the values of the variables x, A, B, and C :

x	-1	1	2	4
$A=a(x)$	1	-2	-4	-2
$B=b(x)$	4	3	2	-1
$C=c(x)$	1	5	7	11

(i) Given the values in the tables above, which of the following statements could be true? Circle all that apply.

$$
A \text { is a function of } B \quad B \text { is a function of } A \quad \text { None of these }
$$

(ii) Which of the functions could be (or are) concave down on the entire interval $-1 \leq x \leq 4$? Circle all that could be correct, and justify your answers algebraically. Answer: $a(x) \quad b(x) \quad c(x) \quad$ none of these

Justification:

b. [3 points] Two lines are given by the equations $y=K x+5$ and $x+y=4$, where K is some constant. For what value(s) of K, if any, will these two lines intersect at $x=1$? Show your work or explain your reasoning.
\qquad

