3. [10 points] Janice recently won $\$ 10,000$ through the Michigan lottery. She was so excited to have the extra spending money that she spent her winnings at a constant rate of $\$ 2,000$ per month. However, when she had $\$ 4,000$ remaining, she decided to curb her spending to make the money last, and she decreased her spending to a constant rate of $\$ 500$ per month until she spent all of her winnings. Let $W(m)$ be the remaining amount of money, in thousands of dollars, that Janice has left from her lottery winnings m months after she wins the money.
a. [4 points] Draw a graph of your function $W(m)$. Be sure to label your axes (including units) along with any important points, including the beginning and end of different pieces of your graph.

b. [1 point] After how many months does she spend all of her winnings?

Solution: 11 months. We can see this from the graph, or from noting that she gets to $\$ 4000$ after spending $10,000-6,000$, and she will spend $\$ 6,000$ after $6000 / 2000=3$ months. She will spend the remaining money in another $4000 / 500=8$ months, meaning it will all be spent after a total of $3+8=11$ months.
c. [5 points] Find a piecewise-defined formula for $W(m)$ on the appropriate domain in the context of the problem.
Solution: For the first piece, we know that she starts with 10 thousand dollars and spends 2 thousand a month, giving us $10-2 m$, and we found previously that this was on the interval $0 \leq m \leq 3$. After that, we know that the slope is -0.5 (thousands of dollars per month), and we know that the second part passes through the point $(3,4)$, so we can use point-slope form to find a formula. In the previous parts, we found the domain of this piece to be $3<m \leq 11$. (Note that we could have included the 3 in either domain, since they both give 4 as the corresponding output.)

$$
W(m)=\left\{\begin{array}{cll}
\frac{10-2 m}{-0.5(m-3)+4} & \text { if } & 0 \leq m \leq 3 \\
-\quad \text { if } & 3<m \leq 11
\end{array}\right.
$$

