1. [10 points] You are looking to model the growth of a new TikTok hashtag \#Math105FUN and you have some data to help you. Initially, at time $t=0$, there are 100 videos with this hashtag. Ten days later (at time $t=10$), there are 500 videos with this hashtag.
a. [3 points] If you assume the growth of this hashtag is linear, find an expression for the function $L(t)$ giving the number of videos with the hashtag \#Math105FUN as a function of t given in days. Your function should match the data points you have so far.

$$
L(t)=
$$

\qquad
b. [3 points] If you assume, instead, that the growth of this hashtag is exponential, find an expression for the function $E(t)$ giving the number of videos with the hashtag \#Math105FUN as a function of t given in days. Your function should match the data points you have so far.

$$
E(t)=
$$

\qquad
c. [2 points] You later get another piece of data: at day $t=12$, the number of videos with the hashtag is 690 . Which model- $L(t)$ vs. $E(t)$-better fits this new information? Show all work.
(Circle one) $\quad L(t)$ IS A BETTER FIT $\quad E(t)$ IS A BETTER FIT
d. [2 points] Let $H(t)$ denote the total number of videos with a different hashtag \#Math105studyfest - t days after September 20, 2023. We want a new function $G(s)$ that instead denotes the total number of \#Math105studyfest videos s days after September 30, 2023. How can we write $G(s)$ in terms of $H(t)$?
$G(s)=\ldots$ (Circle the best answer)

$$
H(s-10) \quad H(s+10) \quad H(s)+10 \quad H(s)-10
$$

