3. [12 points] A heater is turned on in a cold room. Let $n=f(T)$ be the number of hours it takes for the heater to warm the room to a temperature of T degrees Fahrenheit (${ }^{\circ} \mathrm{F}$). A table of values of this function is given below.

T	61	64	66	67	68
$n=f(T)$	0.5	1.3	2.3	3.3	7

The cost, C, in dollars, to run the heater for n hours is given by the formula

$$
C=g(n)=0.25+0.4 n .
$$

Both f and g are invertible functions.
a. [2 points] Compute the quantities $f^{-1}(0.5)$ and $g(f(68))$.

Answer: $f^{-1}(0.5)=$ and $g(f(68))=$ \qquad
b. [2 points] Find a formula for g^{-1} in terms of C.

Answer: $g^{-1}(C)=$ \qquad
c. [3 points] For each part below, write a phrase or sentence giving a practical interpretation of the given expression or equation, or explain why it doesn't make sense in this context.
i. $g(1)=0.65$
ii. $f(g(3))$
(The problem has been restated here for convenience.)
A heater is turned on in a cold room. Let $n=f(T)$ be the number of hours it takes for the heater to warm the room to a temperature of T degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$. A table of values of this function is given below.

T	61	64	66	67	68
$n=f(T)$	0.5	1.3	2.3	3.3	7

The cost, C, in dollars, to run the heater for n hours is given by the formula

$$
C=g(n)=0.25+0.4 n
$$

Both f and g are invertible functions.
d. [3 points] For each item below, write an expression or equation, possibly involving the functions f, g, and/or their inverses, that represents the given statement.
i. It takes an hour to heat the room to $63^{\circ} \mathrm{F}$.
ii. the temperature of the room when the heating costs have reached $\$ 1$
e. [2 points] Circle the numeral of the one description below that is best supported by the evidence in this problem. Clearly show your work in the space below.
i. Each ${ }^{\circ} \mathrm{F}$ increase in temperature takes the same amount of time.
ii. As the room warms up, it takes an increasing amount of time to heat the room to each additional ${ }^{\circ} \mathrm{F}$ in temperature.
iii.It takes less and less time for the heater to heat the room to each additional ${ }^{\circ} \mathrm{F}$ in temperature.

Work:

