3. [12 points] A heater is turned on in a cold room. Let $n=f(T)$ be the number of hours it takes for the heater to warm the room to a temperature of T degrees Fahrenheit (${ }^{\circ} \mathrm{F}$). A table of values of this function is given below.

T	61	64	66	67	68
$n=f(T)$	0.5	1.3	2.3	3.3	7

The cost, C, in dollars, to run the heater for n hours is given by the formula

$$
C=g(n)=0.25+0.4 n .
$$

Both f and g are invertible functions.
a. [2 points] Compute the quantities $f^{-1}(0.5)$ and $g(f(68))$.

Solution: $\quad g(f(68))=g(7)=0.25+0.4(7)=0.25+2.8=3.05$

$$
\text { Answer: } f^{-1}(0.5)=\mathbf{6 1} \quad \text { and } \quad g(f(68))=\frac{\mathbf{3 . 0 5}}{}
$$

b. [2 points] Find a formula for g^{-1} in terms of C.

Solution: To get the inverse we can solve $C=0.25+0.4 n$ for n as follows:

$$
\begin{gathered}
C-0.25=0.4 n \\
\frac{C-0.25}{0.4}=n
\end{gathered}
$$

This gives us a formula for n in terms of C, which is our inverse.

Answer: $g^{-1}(C)=\quad \frac{C-0.25}{0.1}$
c. [3 points] For each part below, write a phrase or sentence giving a practical interpretation of the given expression or equation, or explain why it doesn't make sense in this context. i. $g(1)=0.65$

Solution: The cost to run the heater for 1 hour is $\$ 0.65$.

ii. $f(g(3))$

Solution: This composition does not having a meaning in this context. The units of $g(3)$ are dollars, which does not make sense to plug into f, which takes a temperature in degrees Fahrenheit.

(The problem has been restated here for convenience.)

A heater is turned on in a cold room. Let $n=f(T)$ be the number of hours it takes for the heater to warm the room to a temperature of T degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$. A table of values of this function is given below.

T	61	64	66	67	68
$n=f(T)$	0.5	1.3	2.3	3.3	7

The cost, C, in dollars, to run the heater for n hours is given by the formula

$$
C=g(n)=0.25+0.4 n .
$$

Both f and g are invertible functions.
d. [3 points] For each item below, write an expression or equation, possibly involving the functions f, g, and/or their inverses, that represents the given statement.
i. It takes an hour to heat the room to $63^{\circ} \mathrm{F}$.

Solution: $\quad f(63)=1$ OR $f^{-1}(1)=63$.
ii. the temperature of the room when the heating costs have reached $\$ 1$

Solution: $f^{-1}\left(g^{-1}(1)\right)$. It is also fine if you solve for $g^{-1}(1)$ explicitly and get instead: $f^{-1}(0.75 / 0.4)$ or $f^{-1}(1.875)$
e. [2 points] Circle the numeral of the one description below that is best supported by the evidence in this problem. Clearly show your work in the space below.
i.Each ${ }^{\circ} \mathrm{F}$ increase in temperature takes the same amount of time.
ii. As the room warms up, it takes an increasing amount of time to heat the room to each additional ${ }^{\circ} \mathrm{F}$ in temperature.
iii.It takes less and less time for the heater to heat the room to each additional ${ }^{\circ} \mathrm{F}$ in temperature.

Work:

Solution: Let's use the values in the table to look at how the average rates of change change.

$$
\frac{1.3-0.5}{64-61}=\frac{.8}{3}=0.2 \overline{6} \quad \frac{2.3-1.3}{66-64}=\frac{1}{2}=0.5 \quad \frac{3.3-2.3}{67-66}=1 \quad \frac{7-3.3}{68-67}=3.7
$$

Since these average rates of change are increasing, that indicates that the number of additional hours for each additional degree Fahrenheit of heating is getting larger.

