2. [12 points] A local grocery store sells dry goods in bulk, and one of the goods it sells is quinoa. It costs the store $\$ 110.50$ per month (for the space, employee time, etc.) to be able to stock and sell quinoa and $\$ 1.25$ per pound to purchase its supply of quinoa. The store charges customers $\$ 4.50$ per pound for quinoa.
a. [3 points] Let $C(q)$ be the monthly cost, in dollars, for the store to stock and sell q pounds of quinoa per month. Find a formula for $C(q)$.

Solution: Based on the given information, the average rate of change of the cost is constant ($\$ 1.25$ per pound), so $C(q)$ is linear with slope $\$ 1.25 / \mathrm{lb}$.
The fixed cost is $\$ 110.50$, so $C(q)=110.50+1.25 q$.
Answer: $C(q)=\quad 110.50+1.25 q$
b. [2 points] Let $R(q)$ be the store's monthly revenue from quinoa, in dollars, if it sells q pounds of quinoa that month. Find a formula for $R(q)$. Recall that revenue is the total amount of money that the store brings in, i.e. how much money customers pay.

Solution: The price for customers is $\$ 4.50$ per pound, so the revenue from selling q pounds is $R(q)=4.50 q$.

Answer: $R(q)=4.50 q$
c. [4 points] Assume that the store sells all of the quinoa that it buys each month. How many pounds of quinoa must the store sell in a month in order to not lose money from selling quinoa? (That is, how many pounds of quinoa must the store sell in order to break even on quinoa?) Remember to show your work.

Solution: The store will break even when $R(q)=C(q)$. Solving for q, we have

$$
\begin{aligned}
R(q) & =C(q) \\
4.50 q & =110.50+1.25 q \\
3.25 q & =110.50 \\
q & =110.50 / 3.25 \\
q & =34
\end{aligned}
$$

So the store breaks even when $q=34$ (and makes a profit if $q>34$). The store must sell at least 34 pounds of quinoa in order to not lose money from selling quinoa.

Answer:
 34 pounds

d. [3 points] The store also sells almonds. Suppose it sells, on average, a_{0} pounds of almonds per month. Let $P(a)$ be the profit, in dollars, that the store earns each month from selling a pounds of almonds. Give a practical interpretation of the quantity $P\left(a_{0}+100\right)-P\left(a_{0}\right)$. (Include units. Your interpretation should not include any math symbols or variables.)

Solution: The quantity $P\left(a_{0}+100\right)-P\left(a_{0}\right)$ is the additional monthly profit, in dollars, that the store earns from selling 100 more pounds of almonds in a month than they sell on average.

