4. [11 points] Consider the line ℓ given by the equation $y=-3+0.2 x$.
a. [3 points] Find the slope and both intercepts of ℓ.

Solution: Since the given equation is already in slope-intercept form, we see that the slope of ℓ is 0.2 and its y-intercept is -3 . To find the x-intercept, we solve the equation $0=-3+0.2 x$ to find $x=15$.
slope: $\quad 0.2 \quad x$-intercept: $15 \quad y$-intercept: $_$-3
b. [3 points] Find an equation for the line that is perpendicular to the line ℓ (above) and passes through the point $(4,-2)$.

Solution: Since the slope of ℓ is 0.2 , the slope of this line is $-1 / 0.2=-5$. Using the given point $(4,-2)$ and point-slope form, we find $y+2=-5(x-4)$ so $y=-2-5(x-4)$. (Or, simplifying to slope-intercept form, this is $y=18-5 x$.)

Answer:

$$
y=\begin{gathered}
-2-5(x-4) \quad \text { or } \quad y=18-5 x \\
\hline
\end{gathered}
$$

c. [5 points] Find an equation for the parabola satisfying both of the conditions below.

- Its y-intercept is 5 .
- Its vertex is the point on the line ℓ (above) where $x=10$.

Solution: The point on the line ℓ where $x=10$ has y-coordinate $-3+0.2(10)=-1$. Hence $(10,-1)$ is the vertex of this parabola. Using vertex form, an equation is therefore given by $y=a(x-10)^{2}-1$ for some non-zero constant a.

To find a we use the other piece of information provided.
The y-intercept of the parabola is 5 , so the point $(0,5)$ is on the parabola. Thus we have $5=a(0-10)^{2}-1$ and, solving for a, we find $a=0.06$. Hence an equation for the parabola is $y=0.06(x-10)^{2}-1$. (In standard form, this is $y=0.06 x^{2}-1.2 x+5$.)

Answer: $y=\frac{0.06(x-10)^{2}-1}{}$

