3. [12 points] Consider the functions F(x) and G(x) given below. Assume the function G(x) is invertible.

x	-1	0	1	2	3
G(x)	-3	-1	0.3	1	2

Compute the following quantities. Write UNDEFINED if the quantity can't be computed with the information provided.

a. [2 points]
$$G(1)=$$

$$G^{-1}(1) =$$

Solution:
$$G(1) = 0.3$$
 $G^{-1}(1) = 2$

$$G^{-1}(1) = 2$$

b. [2 points]
$$F(G(2)) =$$
______ $F(F(-3)) =$ ______

$$F(F(-3)) =$$

Solution:
$$F(G(2)) = F(1) = 3$$
 $F(F(-3)) = F(-2) = -1$.

$$F(F(-3)) = F(-2) = -1.$$

c. [3 points] Solve the following equations:

$$F(a) = 0$$
 $a =$ $G(b) = -3$ $b =$

Solution:
$$F(a) = 0 a = -1, 0 G(b) = -3 b = -1.$$

$$G(b) = -3 \qquad b =$$

d. [2 points] If G(F(x)) = 2, then x =______

Solution: If G(F(x)) = 2, then F(x) = 3 and x = 1.

e. [3 points] Let R(x) be defined as follows

$$R(x) = \begin{cases} 4x^2 & x \le 1\\ 1 + 2x & x > 1. \end{cases}$$

For h > 0, find an expression for R(1+h) - R(1) only in terms of h. No need to simplify. R(1+h) - R(1) =_____

Solution:
$$R(1+h) - R(1) = 1 + 2(1+h) - 4$$
.