3. [12 points] Consider the functions $F(x)$ and $G(x)$ given below. Assume the function $G(x)$ is invertible.

x	-1	0	1	2	3
$G(x)$	-3	-1	0.3	1	2

Compute the following quantities. Write undefined if the quantity can't be computed with the information provided.
a. [2 points] $G(1)=$ \qquad $G^{-1}(1)=$ \qquad
Solution: $\quad G(1)=0.3 \quad G^{-1}(1)=2$
b. [2 points] $F(G(2))=$ \qquad $F(F(-3))=$ \qquad

Solution: $\quad F(G(2))=F(1)=3 \quad F(F(-3))=F(-2)=-1$.
c. [3 points] Solve the following equations:

$$
F(a)=0 \quad a=\ldots \quad G(b)=-3 \quad b=\ldots .
$$

Solution:
$F(a)=0 \quad a=-1,0 \quad G(b)=-3 \quad b=-1$.
d. [2 points] If $G(F(x))=2$, then $x=$ \qquad —.

Solution: If $G(F(x))=2$, then $F(x)=3$ and $x=1$.
e. [3 points] Let $R(x)$ be defined as follows

$$
R(x)= \begin{cases}4 x^{2} & x \leq 1 \\ 1+2 x & x>1\end{cases}
$$

For $h>0$, find an expression for $R(1+h)-R(1)$ only in terms of h. No need to simplify. $R(1+h)-R(1)=$ \qquad
Solution: $\quad R(1+h)-R(1)=1+2(1+h)-4$.

