1. [8 points] Indicate if each of the following statements are true or false by circling the correct answer. No justification is required.
a. [2 points] For any function $f, f(x+3)=f(x)+f(3)$.

True False
b. [2 points] The function $k(w)$ shown in the table below could be linear.

$$
\begin{array}{c|c|c|c}
w & 2 & 4 & 7 \\
\hline k(w) & -2 & 1 & 4
\end{array}
$$

True False
c. [2 points] Let the function $g(x)$ be the inverse of $h(x)$. If $h(3)=4$, then $h(g(4))=4$.

True
False
d. [2 points] According to the following table, $Z$ could be a function of $Y$.

$$
\begin{array}{c|c|c|c|c|c}
Y & 2 & 3 & 3.7 & 4.5 & 5.2 \\
\hline Z & -2 & 1.5 & 3.4 & 2.6 & 1.5
\end{array}
$$

True
False
2. [6 points]
a. [4 points] Consider the exponential functions $f(x)=a b^{x}$ and $g(x)=c d^{x}$, where $a, b, c$ and $d$ are positive constants. The graphs of $f(x)$ (in solid line) and $g(x)$ (in dashed line) are shown below.


Determine which of the following inequalities must be true. Circle all that apply.

$$
b<d \quad d<b \quad a<c \quad c<a \quad c<b \quad b<c
$$

b. [2 points] Find the value of the constant $m$ if the lines $2 x+4 y=5$ and $m x-3 y=1$ are perpendicular.

$$
m=
$$

$\qquad$

