5. [12 points] A coffee shop owner buys coffee from company A or company B. Let $A(c)$ and $B(c)$ be the cost (in dollars) of buying c pounds of coffee from company A and company B respectively. The formulas for the cost functions are given below

$$
A(c)=15+8.25 c \quad \text { and } \quad B(c)=22+7.85 c
$$

a. [3 points] What is the practical interpretation of the slope of $A(c)$?

Solution: The cost in dollars of buying an additional pound of coffee from company A. In the following questions, you must find all your answers algebraically. Show all your work. Your answers must be accurate up to the first two decimals.
b. [2 points] How many pounds of coffee do you need to buy in order for the cost of the coffee to be the same if you buy it either from company A or company B?

Solution: We need to find the number c of lbs of coffee such that

$$
\begin{aligned}
15+8.25 c & =22+7.85 c \\
0.40 c & =7 \\
c & =\frac{7}{0.40}=17.5 \text { lbs of coffee. }
\end{aligned}
$$

c. [2 points] If the coffee shop owner wants to buy 1000 dollars worth of coffee from company A, how many pounds of coffee can he afford?

Solution:

$$
\begin{aligned}
15+8.25 c & =1000 . \\
8.25 c & =985 . \\
c & =\frac{985}{8.25}=119.32 \mathrm{lbs} \text { of coffee. }
\end{aligned}
$$

d. [5 points] Suppose that the coffee shop owner wants to buy 500 dollars worth of coffee, but he wants to buy 50 percent more coffee from company A than from company B. How many pounds of coffee does he need to buy from company B?

Solution: Let a and b be the number of lbs of coffee that he will buy from company A and B respectively. If he wants to buy 50 percent more coffee from company A than from company B, then $a=1.5 b$. If he spends 500 dlls in coffee, then $A(a)+B(b)=500$. Therefore

$$
\begin{aligned}
& A(a)+B(b)=(15+8.25 a)+(22+7.85 b)=500 \\
& \text { using } a=1.5 b \quad 15+8.25(1.5 b)+(22+7.85 b)=500 . \\
& 15+12.375 b+22+7.85 b=500 \\
& 37+20.225 b=500 \\
& 20.225 b=463 \quad b=22.89 \text { lbs of coffee from company B. }
\end{aligned}
$$

