6. [17 points] Luis and Elena are two biologists studying the population of frogs and butterflies that live in an island. Upon their arrival to the island, they found that there were 2 thousand frogs in the island. Show all your work.
a. [3 points] Luis believed that the population of frogs living in the island increases by 300 frogs every six months. Let $f(t)$ be the amount of frogs (in thousands) living in the island, t months after they arrived at the island, according to Luis belief. Find a formula for $f(t)$.

Solution: Since $f(t)$ is linear, then $f(t)=m t+b$. We know that the slope m of $f(t)$ is $\frac{0.3}{6}$ (0.3 thousand every month). Since there were 2 thousand frogs in the island when they arrived, then $b=2$. Hence $f(t)=2+0.05 t$.
b. [3 points] Elena's hypothesis is that the population of frogs living in the island increases exponentially at a rate of 23% every month. Let $g(t)$ be the amount of frogs (in thousands) living in the island, t months after they arrived at the island, according to Elena's hypothesis. Find a formula for $g(t)$.

Solution: The function $g(t)$ is exponential, then $g(t)=a b^{t}$. Since there were 2 thousand frogs in the island when they arrived, then $a=2$. Since the population of frogs living in the island increases exponentially at a rate of 23% every month, then $b=1+0.23=1.23$. Hence $f(t)=2(1.23)^{t}$

As the frog's population increased, the amount of butterflies in the island started to decrease. The population of butterflies 2 and 5 months after Elena and Luis arrived at the island was 20 thousand and 7 thousand respectively.
c. [4 points] Let $G(t)$ be a linear function describing the population of butterflies (in thousands) t months after the biologists arrive at the island. Find a formula for $G(t)$.

Solution: The problem states that the points $(2,20)$ and $(5,7)$ are in the graph of the linear function $G(t)=m t+b$. The slope of G is $m=\frac{7-20}{5-2}=-\frac{13}{3}$.
Using the point $(2,20)$, we find

$$
G(t)=20-\frac{13}{3}(t-2)=-\frac{13}{3} t+\frac{86}{3} .
$$

The statement of the problem has been included for your convenience
As the frog's population increased, the amount of butterflies in the island started to decrease. The population of butterflies 2 and 5 months after Elena and Luis arrived at the island was 20 thousand and 7 thousand respectively.
d. [5 points] Let $H(t)$ be an exponential function describing the population of butterflies (in thousands) t months after the biologists arrive at the island. Find a formula for $H(t)$. Your answer must be in exact form.

Solution: The problem states that the points $(2,20)$ and $(5,7)$ are in the graph of the exponential function $H(t)=a b^{t}$. Hence a and b satisfy $20=a b^{2}$ and $7=a b^{5}$. Then

$$
\begin{aligned}
\frac{a b^{5}}{a b^{2}} & =\frac{7}{20} \\
b^{3} & =\frac{7}{20}=0.35 \\
b & =\sqrt[3]{0.35} . a b^{2}=20 \\
a & =\frac{20}{(\sqrt[3]{0.35})^{2}} \quad f(t)=a b^{t}=\frac{20}{(\sqrt[3]{0.35})^{2}}(\sqrt[3]{0.35})^{t}
\end{aligned}
$$

e. [2 points] By what percentage is the population of butterflies reduced every month? Your answer must be accurate up to the first two decimals.

Solution: It is reduced by 29.53% every month.

