8. [10 points] A cannon fires a cannonball. Let p be a positive constant and

$$
f(t)=-5 t^{2}+p t+30
$$

be the height of the cannonball (in meters) above the ground t seconds after the cannon was fired.
a. [3 points] Find the value and a practical interpretation of the vertical intercept of the function $f(t)$.

Solution: Vertical intercept: $f(0)=30$ meters.
Practical interpretation: The height of the cannon above the ground in meters.
b. [5 points] Complete the square to put the formula of f in vertex form. Carefully show your algebraic work step by step. Your answer may include the constant p.

Solution:

$$
\begin{aligned}
f(t) & =-5 t^{2}+p t+30 \\
& =-5\left(t^{2}-\frac{p}{5} t\right)+30 \\
& =-5\left[t^{2}-\frac{p}{5} t+\left(\frac{p}{10}\right)^{2}-\left(\frac{p}{10}\right)^{2}\right]+30 \\
& =-5\left[\left(t-\frac{p}{10}\right)^{2}-\left(\frac{p}{10}\right)^{2}\right]+30 \\
& =-5\left(t-\frac{p}{10}\right)^{2}+5\left(\frac{p}{10}\right)^{2}+30 \\
& =-5\left(t-\frac{p}{10}\right)^{2}+\frac{p^{2}}{20}+30=-5\left(t-\frac{p}{10}\right)^{2}+\frac{p^{2}+600}{20}
\end{aligned}
$$

c. [2 points] What should be the value of p if the maximum height of the cannonball is 200 meters above the ground? Find your answer algebraically. Show all your work.

Solution: The maximum height is given by $H_{\max }=\frac{p^{2}+600}{20}$. Hence the maximum height of the cannonball will be 200 meters if $\frac{p^{2}+600}{20}=200$. Hence $p^{2}+600=4000$ and $p=\sqrt{3400}$.

